

PROPOSED HOUSING DEVELOPMENT AT CORNAMADDY, ATHLONE, CO. WESTMEATH

SERVICES DESIGN REPORT

CLIENT. WESTMEATH COUNTY COUNCIL

PROJECT NO. 23188

DOCUMENT NO. 23188-SDS-XX-RP-C-0001-01

DATE NOVEMBER 2025

REV. 01

DOCUMENT TITLE SHEET

Client: Westmeath County Council, Aras An Chontae, Mount Street, Mullingar, N91 FH4N.

Project

Description: The proposed development at Cornamaddy, Athlone, Co. Westmeath. The

Construction of 94no. residential units comprising of the following:

(55no. 2 bed (4 person) terraced houses (c.86m2 each), 14no. 3 bed terraced houses (c. 100 m2 each) and 2 no. 4 bed 2 story semi detached houses (c. 120m2 each) and 15 no. 4 bed 3 story semi detached houses (c. 148m2 each) all with associated private gardens.4no. 1 Bed Ground floor Apartments, 2 Person UD / Age Friendly (c. 51.5m2) and = 4no. 1 Bed first floor apartments, 2 Person (c. 51.5m2) with private amenity spaces on ground floor terraces or first floor balconies) and connection to existing services together with all ancillary site

development works.

Project. No. 23188

DISCLAIMER

This Document is Copyright of (Structural Design Solutions) Ltd., Consulting Structural & Civil Engineers. This document and its contents have been prepared for the sole use of our named client and no liability is accepted by SDS (Structural Design Solutions) Ltd., Consulting Structural & Civil Engineers for the use of this report, or its contents for any other use than for which it was prepared.

Copyright: © SDS (Structural Design Solutions) Ltd., Consulting Structural & Civil Engineers 2025.

Spain: Calle Virgen de Guadalupe,44. Úbeda, 23400, Jaén. España. Email: info@structuraldesign.ie

Web: https://www.structuraldesign.ie/

DOCUMENT CONTROL SHEET

PROJECT No:	23188									
PROJECT NAME:	Proposed Housing Development at Cornamaddy, Athlone, Co.Westmeath									
DOCUMENT REF:	P:\2023\23188 - Westmeath CoCo - Housing Scheme - Cornamaddy Athlone\Design\04 Service Design Report									
REVISION	DATE	DESCRIPTION	ESCRIPTION Services Design Report							
			PREPARED	CHECKED	ISSUED					
01	05/12/2025	INITIALS:	AS	CD	CD					
		DATE:	05/12/2025	05/12/2025	05/12/2025					
			PREPARED	CHECKED	ISSUED					
		INITIALS:								
		DATE:								
	1									
			PREPARED	CHECKED	ISSUED					
		INITIALS:								
		DATE:								
	1									
			PREPARED	CHECKED	ISSUED					
		INITIALS:								
		DATE:								
	1									
			PREPARED	CHECKED	ISSUED					
		INITIALS:								
		DATE:								
	1		DDEDARED	CHECKED	ICCLIED					
		INUTIALC	PREPARED	CHECKED	ISSUED					
		INITIALS:								
		DATE:								

SDS - CIVIL, BUILDING & STRUCTURAL ENGINEERS

Head Office: Unit 9, N5 Business Park, Castlebar, Co. Mayo, F23 E283
Dublin: Silverdale, Old Swords Road, Santry, Dublin 9 D09 CA24.
London: Bridge House, 25-27 The Bridge, Wealdstone, Harrow, HA3 5AB. Tel: +44 (0)20 30266724
Spain: Calle Virgen de Guadalupe,44. Übeda, 23400, Jaén. España.
Tel: +34 662556212

Web: https://www.structuraldesign.ie/ Email: info@structuraldesign.ie

Head Office: Unit 9, N5 Business Park, Castlebar, Co. Mayo, F23 E283
Dublin: Silverdale, Old Swords Road, Santry, Dublin 9 D09 CA24.
London: Bridge House, 25-27 The Bridge, Wealdstone, Harrow, HA3 5AB. Tel: +44 (0)20 30266724
Spain: Calle Virgen de Guadalupe,44. Úbeda, 23400, Jaén. España.
Tel: +34 662556212

Email: info@structuraldesign.ie Web: https://www.structuraldesign.ie/

TABLE OF CONTENTS

1	IN	ISTRUCTION	
2		ROJECT DETAILS	
3		TE LOCATION, SITE DESCRIPTION	
4		ACKGROUND SURVEYS	
•	4.1.1		
	4.1.2		
5	ГІ	LOOD RISK	
5			
	5.1	Historic Flooding	
	5.2	Flood Maps	2
	5.3	Mitigating Risks	5
6	1.0	DCAL AUTHORITY	ſ
7		JRFACE WATER STRAGETY	
/			
	7.1	HIERARCHY OF DISPOSAL	
	7.2	COMPLINACE WITH SuDS PRINCIPLES	
	7.2.1	The product of the state of the	
	7.2.2	SuDS Management Train	8
	7.3	SUSTAINABLE URBAN DRAINAGE SYSTEMS	8
	7.3.1	RAINWATER HARVESTING	8
	7.3.2	GREEN ROOFS	8
	7.3.3	SOAKAWAYS	
	7.3.4	SWALES	
	7.3.5	TREE PITS	9
	7.3.6	PERVIOUS PAVEMENTS	9
	7.3.7	GEO-CELLULAR / MODULAR SYSTEMS	9
	7.3.8	PONDS / RAIN GARDENS / INFILTRATION BASINS	9
	7.3.9	EXISTING SURFACE WATER	10
	7.4	PROPOSED SURFACE WATER COLLECTION SYSTEM	10
	7.4.1	OUTFLOW FROM SITE	10
	7.4.2	SURFACE WATER ATTENUATION SYSTEM	10
8	FC	OUL EFFLUENT	12

Web:

8.1	PROPOSED FOUL SEWER SYSTEM	11
8.2	WASTEWATER LOADING RATES	11
9	Potable Water Supply	12
9.1	Existing Water Supply	12
9.2	Proposed Water Supply	13
9.3	Fire Hydrants	13
10	SUMMARY AND CONCLUSIONS	13
APPEN	IDIX A – TOPGRAPHICAL SURVEY	14
APPEN	IDIX B – UISCE EIREANN MAP RECORDS	15
APPEN	IDIX C – MICRODRAINAGE OUTPUTS	16
APPEN	NDIX D – MET ÉIREANN RAINFALL RETURN PERIOD DATA	17
APPFN	IDIX F – UISCE FIREANN PRE-CONNECTION ENQUIRY	18

Web:

1 INSTRUCTION

SDS Design Engineers have been appointed by the Client Westmeath County Council, to prepare a Services Design Report to accompany a Planning Application to Westmeath County Council for the proposed development, Cornamaddy, Athlone, Co. Westmeath.

2 PROJECT DETAILS

The proposed development at Cornamaddy, Athlone, Co. Westmeath comprises of the development of residential dwellings.

The proposed development comprises of the following:

- Formation of new development entrance
- The Construction of 94no. residential units comprising of the following: (55no. 2 bed (4 person) terraced houses (c.86m2 each), 14no. 3 bed terraced houses (c. 100 m2 each) and 2 no. 4 bed 2 story semi detached houses (c. 120m2 each) and 15 no. 4 bed 3 story semi detached houses (c. 148m2 each) all with associated private gardens.4no. 1 Bed Ground floor Apartments, 2 Person UD / Age Friendly (c. 51.5m2) and = 4no. 1 Bed first floor apartments, 2 Person (c. 51.5m2) with private amenity spaces on ground floor terraces or first floor balconies) and connection to existing services together with all ancillary site development works.
- all ancillary site development works

Figure 2.1 shows the proposed site layout plan for the new development.

Figure 2.1 – Proposed Site Layout Plan

3 SITE LOCATION, SITE DESCRIPTION

The application site is a greenfield site located in the townland of Cornamaddy, Athlone, Co. Westmeath. (Figure 3.1). The site is Located off the Ballymahon Road to the northeast of Athlone town centre. The site has an area of approximately 6.51 hectares (65,106.24m² | 16.08 acres). This application includes all the required drawings for the drainage and Sustainable urban Drainage Design Systems (SuDS), foul, and watermain works.

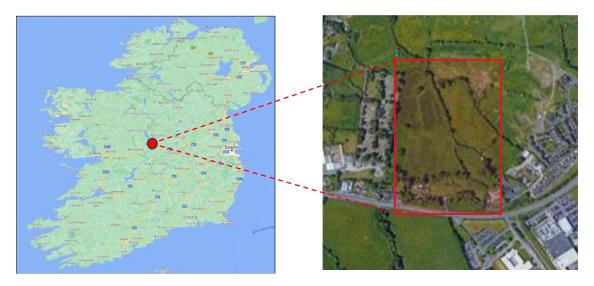


Figure 3.1 - Site Location (image courtesy of Google Maps)

Figure 3.2 – Site location at Cornamaddy, Athlone, Co. Westmeath (*image courtesy of*)

Figure 3.3 – Areal view of proposed site (image courtesy of Google Maps

4 BACKGROUND SURVEYS

4.1.1 Site Topography

A topographical survey was conducted by Erkina Surveys. in June 2024.. Topographical survey of the existing site is presented in Appendix A.

4.1.2 GROUND CONDITIONS

In order to assertain the existing ground counditions a site investigation was carried out by Site Investigations Ireland Ltd on the September 2024. The site investigation includes the following elements:

- 12 No. Trial Pits
- 12 No. Boreholes
- 10 No. Plate Tests
- 5 No. Soakaway Tests
- Ground Probing Radar Survey

Figure 4.1 below shows the extend of the site investigation. Soil stratification was detrmined from TP01, to TP11 with topsoil overlying light grey, brown slightly sandy slightly gravelly clayey SILT. Made ground was identified at TP12. Infiltration testing was carried out in accrodance with BRE Digest 365 *Soakway Design*. Site testing yielded poor infiltration rates in four of the soakaway tests. However INF02 was completed. Refer to Appendix B for Site Investigations Ireland site investigation report.

Figure 4.1 Site investigation locations (Source: Site Investigations Ireland LTD)

5 FLOOD RISK

To establish if there is a risk of flooding to the proposed development and its location a desktop-based flood risk study was undertaken. As part of this study, several informative reports, studies, and records were reviewed to determine if risk of flooding was an issue. The following sources of information was used in order to determine if the proposed site poses a flood risk:

- Historic flood maps and reports from OPW (www.floodinfo.ie)
- Western Catchment Flood Risk Assessment and Management (CFRAM)
- Galway County Council Development Plan 2022-2028.

5.1 Historic Flooding

Figure 5.1 below shows the past flood events within 2.0 km zone of the site. Flooding was noted in January 2014; the extent of the flooding is unknown.

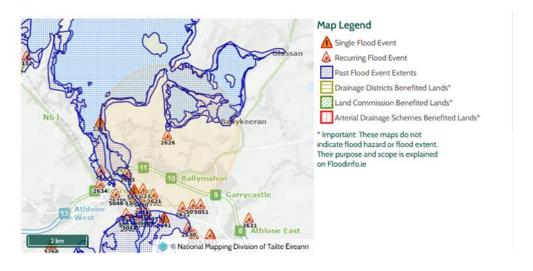


Figure 5.1 – Past flood events within 2.0Km of proposed site (Source: www.floodinfo.ie)

5.2 Flood Maps

Based on a review of the Western Catchment Flood Risk Assessment and Management (CFRAM) study it can be noted that proposed site is located within Flood Zone C (where the probability of flooding from rivers and the sea is low (less than. 0.1% or 1 in 1000 for both river and coastal flooding). Figure 5.2 below shows the flood map for the proposed site with the location of the proposed site marked with a red X.

23188-SDS-XX-RP-C-0001-01 Services Design Report Page 4

Figure 5.2 – Flood Map (Source: County Mayo Strategic Flood Risk Assessment 2022)

5.3 Mitigating Risks

The proposed storm network strategy will pose a minimal risk to the proposed site and surrounding area. Thus, the following mitigating measures include:

- 1. The proposed drainage network including the SuDS features which shall be maintained on a regular basis to reduce the risk of a blockage.
- 2. The runoff from the site will be controlled through three separate hydrobrakes. The runoff from the site will be discharged into the existing stream with the final Hydrobrake on the site restricting the flow to 7.2 l/s
- 3. SuDS features are designed in accordance with Greater Dublin Strategic Drainage Study recommendations (1 in 100-year flood event plus 30% climate change due to global warming).

6 LOCAL AUTHORITY

Westmeath County Council will be provided with the relevant drawings and the associated design calculations for the services proposed for this development for consideration.

7 SURFACE WATER STRAGETY

The following section outlines the hierarchy of options when considering the removal and disposal of surface water from site, before outlining a host of potential sustainable urban drainage system (SuDS) techniques considered when designing the surface water collection system for the proposed site. The proposed surface strategy was designed in accordance with the following guidelines/polices:

- The SUDS Manual (C754,2015)
- Galway County Council Development Plan 2022-2028.
- Greater Dublin Strategic Drainage Study (GDSDS)

It is proposed that SuDS techniques are implemented wherever possible to manage surface water runoff from the development. Surface water management proposals for the site have been articulated to mimic the natural drainage patterns of the existing site.

7.1 HIERARCHY OF DISPOSAL

Generally, when designing a proposed surface water collection system, the philosophy of the design should be to prioritise the below methods of discharging surface water run off as much as reasonably practicable, from 1 (most desirable) to 5 (least desirable):

- 1. Collect for Re-Use
- 2. into the ground (infiltration),
- 3. To a surface waterbody,
- 4. To a surface water sewer, highway drain, or other drainage systems,
- 5. To a combined sewer.

Table 6.1 below shows a summary of the hierarchy of disposal for the proposed development. The surface water hierarchy of disposal will be based on a priority level 4 due to site constraints.

Priority Discharge Availability Comments Location Level Y/N Rainwater harvesting is deemed 1 Ν unpracticable due to the low water demand. Collect for Use Infiltration testing was carried out Into the ground and results show that the poor 2 Ν - Infiltration infiltration rates and therefore Hierarchy infiltration has been disregarded. The surface water from this site is To a Surface 3 Υ to be discharged into an existing Waterbody stream at the north of the site. Discharge to a surface water sewer, highway Not considered as surface water 4 Ν drain, or is discharged to a nearby stream. another drainage system According to Uisce Eireann Discharge to a 5 records a combined sewer is not Ν combined sewer

Table 6.1: Hierarchy of Disposal

present.

1. COLLECT FOR Re-USE

The low water demand for the proposed development does not warrant rain harvesting system as it would involve pumping of water which would outweigh the cost saving and therefore the scheme does not include collection for reuse.

2. INTO THE GROUND - INFILTRATION

Infiltration testing was carried out on 5 no. trial pits in accordance with BRE Digest 365 and yielded poor infiltration rates. As a result of this, such findings consequently make infiltration an unviable option for the surface water treatment of the proposed development, therefore making controlled discharge and storage the proposed treatment option.

3. TO A SURFACE WATERBODY

The surface water from this site is to be discharged into an existing stream at the north of the site. It is proposed to discharge the runoff from the site into the nearby stream with a controlled discharge rate of 7.2l/s.

4. DISCHARGE TO A SURFACE WATER, HIGHWAY DRAIN, OR ANOTHER DRAINAGE SYSTEM

According to Uisce Eireann records an existing surface water network is not present on site.

5. DISCHARGE TO A COMBINED SEWER

According to Uisce Eireann records a combined sewer is not present near the site.

7.2 COMPLINACE WITH SuDS PRINCIPLES

7.2.1 Compliance with C573 SuDS Manual

The C573 SuDS Manual explains that the primary function of SuDS measures is to protect watercourses from any impact due to the new development. However, SuDS can also improve the quality of life in a new development and urban spaces by making them more vibrant, visually attractive, sustainable and more resilient to change. This document explains the wider social context of SuDS and how SuDS can deliver high quality drainage while supporting urban areas to cope better with sever rainfall both now and in the future. There four pillars of SuDS include:

- 1. Water Quantity (mitigate flood risk & protect natural water cycle)
- 2. Water Quality (manage the quality of the runoff to prevent pollution)
- 3. Amenity (create and sustain better places for people)
- 4. Biodiversity (create and sustain better places for nature)

7.2.2 SuDS Management Train

The SuDS measures proposed are usually linked in series, and this is commonly known as a SuDS Management Train, (SMT). The SMT ensures that surface runoff is captured, conveyed, stored, intercepted, and removed of pollutant correctly and efficiently before it is discharged back into the surrounding watercourse/network. This approach will ensure that the most effective measures are utilised in the correct sequence throughout the site. Table 26.7 (Figure 7.1) (CIRIA, SuDS Manual 2015) demonstrates the effectiveness of each SuDS measure along the SMT.

SuDS component	Interception¹	Close to source/ primary treatment	Secondary treatment	Tertiary treatmen
Rainwater harvesting	Y			
Filter strip	Y	Y		
Swale	Y	Y	Y	
Filter drain	Y		Y	
Permeable pavement	Y	Y		
Bioretention	Y	Y	Y	
Green roof	Y	Y		
Detention basin	Y	Y	Y	
Pond	3	Y ₃	Y	Y
Wetland	.3	Y ²	Y	Y
Infiltration system (soakaways/ trenches/ blankets/basins)	Y	Y	Y	Y
Attenuation storage tanks	Ye			
Catchpits and gullies		Y		
Proprietary treatment systems		Ys	Y ³	Ys

Figure 7.1 CIRIA C573 SuDS Manual Table (Source: The SUDS Manual C754,2015)

7.3 SUSTAINABLE URBAN DRAINAGE SYSTEMS

The following section outlines the potential SuDS techniques considered for the proposed site, with proposals such as green roofs, Soakaways, swales, and modular systems all being discussed herein.

7.3.1 RAINWATER HARVESTING

Rainwater harvesting (RWH) is the collection of rainwater runoff for use. Runoff can be collected from roofs and other impermeable areas, stored, treated (where required) and then used as a supply water for domestic, commercial and/or institutional properties. As previously discussed RWH will be disproportionate in terms of cost and function with regards to the proposed development features (toilet, sinks etc.) Therefore, rainwater harvesting has been disregarded for this design.

7.3.2 GREEN ROOFS

Green roofs comprise a multi-layered system that covers the roof of a building or podium structure with vegetation cover, over a drainage layer. They are designed to intercept and retain precipitation, reducing the volume of run-off and attenuating peak flows. Due to the A-frame roof for the proposed dwellings green roofs have been disregarded.

7.3.3 SOAKAWAYS

Soakaways are square or circular excavations either filled with rubble or lined with brickwork, precast concrete or polyethylene rings/perforated storage structures surrounded by granular backfill. They can be grouped and linked together to drain large areas including highways. The supporting structure and backfill can be substituted by modular geo-cellular units. Soakaways provide storm water attenuation, storm water treatment and groundwater recharge. Soakaways have been disregarded due to poor infiltration rates encountered during site testing.

7.3.4 SWALES

Swales are linear vegetated drainage features in which surface water can be stored or conveyed. They can be designed to allow infiltration, where appropriate. They should promote low flow velocities to allow much of the suspended particulate load in the storm water runoff to settle out, thus providing effective pollutant removal. Swales have not been considered for this development.

7.3.5 TREE PITS

Tree pits are beneficial for bioretention as they intercept precipitation, allow water to evaporate from relief surfaces, facilitate infiltration and groundwater recharge due to their root systems, provide shade, and provide further amenity and biodiversity benefits. However, with alternative methods of surface water treatment being proposed site-wide, tree pits have been disregarded for this development.

7.3.6 PERVIOUS PAVEMENTS

Pervious pavements provide a pavement suitable for pedestrian and/or vehicular traffic while allowing rainwater to infiltrate through the surface and into the underlying layers. The water is temporarily stored between infiltration to the ground, reuse or discharge to a watercourse or other drainage system. Pavements with aggregate sub-bases can provide good water quality treatment. When permeable paving for car parking bays is used, the stone sub-base not only stores and slows down the rate of discharge but also raises the water quality. Pervious pavements have been proposed as a method of achieving interception and treatment for this site before being discharged into the proposed network.

7.3.7 GEO-CELLULAR / MODULAR SYSTEMS

Modular plastic geo-cellular systems with a high void ratio can be used to create a below ground storage structure. Modular tanks can be used for runoff attenuation but require silt trap protection and a suitable means of access for cleaning and inspection. Three geo-cellular systems have been adopted as an attenuation system with the three attenuation tanks. Tank 1 and 2 will each provide storage of 162m3 while tank three will provide storage of 225m3. This totals a combined storage for the site of 549m3. This will provide adequate storage for the proposed site.

7.3.8 PONDS / RAIN GARDENS / INFILTRATION BASINS

Ponds can provide both storm water attenuation and treatment. They are designed to support emergent and submerged aquatic vegetation along their shoreline. Runoff from each rain event is detained and treated in the pool. The retention time promotes removal of silt through sedimentation and the opportunity for biological uptake mechanisms to reduce nutrient concentrations. As the proposed site is residential and ponds have not been considered as it would pose a risk of drowning.

7.3.9 EXISTING SURFACE WATER

Currently, there is no existing surface water infrastructure serving the proposed site. Refer to Appendix B for Uisce Eireann map records. The surface water will be discharged to a nearby stream.

7.4 PROPOSED SURFACE WATER COLLECTION SYSTEM

The proposal for this development is to provide a new surface water collection network, collecting surface water run-off through roof gutters, & downpipes.

The surface water drainage is broken up into three sections.

In drainage area 1 the surface water will be routed directly into the proposed surface water network towards S8.0 where it will pass through a klargester NSBE015 petrol and oil separator before entering the proposed attenuation tank 1 in the centre of the site. A hydrobrake located in S9.0 which will restrict the outflow from this area of the site, limiting the surface water flow from this area to a discharge of 20.5 l/s.

From here the surface water will continue to make its way through drainage area 2 again with all surface water in this area being directed directly into the proposed surface water network towards S12.0 where it will pass through a klargester NSBE010 petrol and oil separator before entering the proposed attenuation tank 2 in the centre of the site. A hydrobrake located in S13.0 which will restrict the outflow from this area of the site, limiting the surface water flow from this area to a discharge of 4.8 l/s.

From here the surface water will continue into drainage area 3 the surface water will be routed directly into the proposed surface water network towards S16.0 where it will pass through a klargester NSBE015 petrol and oil separator before entering the proposed attenuation tank 3 in the north of the site. A hydrobrake located in S17.0 which will restrict the outflow from this area of the site, limiting the surface water flow from this rea to a discharge of 7.2 l/s.

7.4.1 OUTFLOW FROM SITE

Three HydroBrake Optimum by Hydro International (or similar equivalent) will be provided within proposed surface water drainage. These will be provided in S9.0, S13.0 & S17.0 to limit the outflow as outlined above. Refer to drawing no drawing 23188-3035-P1 for proposed discharge location.

7.4.2 SURFACE WATER ATTENUATION SYSTEM

As previously mentioned, the surface water attenuation system includes a Graf EcoBloc attenuation system. In total, this SuDS feature provides a cumulative surface water storage volume of approx. 549m3. This has been designed to provide storage for the surface water generated in a 1 in 100-year rainfall event. The rainfall generated in such an event will be increased by an allowance of 30% to cater for predicted climate change due to global warming as per GDSDS requirements. This storage volume of 549m3 will be adequate in terms of treating and storing surface water in the event of the aforementioned rainfall event. For calculations regarding surface water attenuation system design, please see appendix C, where a maximum rainfall volume to treat of 522.3m3 is calculated. Whilst carrying out the surface water

attenuation design, rainfall return period data was utilised from Met Eireann, which is viewable in Appendix D.

PROPOSED SUDS STRATEGY

The proposed SuDS features will be integrated into the surface water drainage network for the proposed development, with the main objective of controlling the quantity of surface water runoff, managing the quality of runoff to prevent pollution, and creating sustaining local ecosystems. The proposed SuDS strategy for the site include the following:

- 3 No. Graf EcoBloc Attenuation Tank The proposed attenuation tanks shall assist with providing optimal surface water storage on site.
- 3 No. Hydrobrake The proposed hydro brakes shall restrict the discharge from the site into the existing surface water network.
- 3 No. Petrol Interceptor The proposed class 1 petrol interceptors shall cleanse the surface water prior to discharging into the existing surface water network.

8 FOUL EFFLUENT

The proposed development will be serviced by 1 main foul sewer pipe. This 225mm uPVC foul sewer pipe will connect into existing foul sewer (225mm dia.) network identified at the North of the site. For further illustrations of the proposed foul network and the connections to the existing foul network please see drawing 23188-3030-P1 to 23188-3036-P1.

8.1 PROPOSED FOUL SEWER SYSTEM

It is proposed to use a gravity sewer for the new development. A 225mm uPVC foul main between F1.0 and F16.0 where it will connect to the exiting 225mm dia. Foul network.

The new foul sewer system will be constructed within the site in accordance with the following:

- BS EN 752:2008 Drain & Sewer Systems Outside Buildings,
- Building Regulations TGD Part H Drainage and Wastewater Disposal.
- IW Standard Details

8.2 WASTEWATER LOADING RATES

The estimated wastewater discharge rates are summarised for both residential and commercial are shown in Table 8.1 below.

Table 8.1 - Estimated Foul Demand

		Residential,	/Commercial Fo	ul Demand		
Use	No. of Occupancy Rate Units (persons/dwelling)		Population (P)	Average daily domestic demand (I/day)	Average Flow (I/s)	Peak Flow (I/s)
		,, ,	. ,			
Residential/ commercial	94	2.7	253.8	38,070	0.441	2.65

The overall daily wastewater loading is 38,070 litres/day or 38.070m³ day. As mentioned above, the proposed foul sewer system will be connected to the existing foul sewer network to the north of the proposed development. Additionally, it must be noted that a pre-connection application has been submitted to Irish Water for this proposed development, with the corresponding reference number for this application being CDS24008612. Refer to Appendix E for pre-connection enquiry application.

9 Potable Water Supply

9.1 Existing Water Supply

Following the review of the Uisce Eireann ArcGIS Web viewer there is an existing 160mm PE watermain situated in the footbath to the northeast of the proposed development. This can be seen in figure 9.1 below.

Figure 9.1 - Extract from ArcGIS Usice Eireann web viewer showing existing watermains

9.2 Proposed Water Supply

The proposed development will be connected to the existing public watermain via 160mm dia which runs to the north east of the proposed application site. The water demand is calculated in accordance with Code of Practice for Water Infrastructure, Connections and Developer Services, Design & Construction Requirements for Self-Lay Developments, July 2020 (Revision 2)', Section 3.7.2. The total peak average flow for residential use will be 0.048 l/s with a peak flow of 0.288l/s.

The proposed connection for the proposed development will be made in accordance with Irish Water Standard Details for Non-Mechanical Meter Chamber (40-250mm diameter): Ref. STD-W-26-Rev 03. Please refer to drawing 23188-3040-P2 to 23188-3045-P1 for the location and details of the proposed watermains network and fire hydrants proposed for this new site layout. A pre-connection application has been submitted to Uisce Eireann for this proposed development, with the corresponding reference number for this application being CDS24008612.

	Residential/Commercial Water Demand									
Use	No. of Occupancy Rate Units (persons/dwelling)		Population (P)	Average daily domestic demand (I/day)	Average Flow (I/s)	Peak Flow (I/s)				
Residential/ commercial	94	2.7	253.8	41,877	0.048	0288				

Table 9.1 - Estimated Water Demand

9.3 Fire Hydrants

It is proposed to use 10 No. fire hydrants on the loop main. Hydrants shall comply with the requirements of BS 750:2012 and shall be installed in accordance with Irish Waters Code of Practice and Standard Details.

10 SUMMARY AND CONCLUSIONS

SURFACE WATER

The proposed surface water network on site consists of series of roof gutters and downpipes, and Graf EcoBloc Attenuation Tank. These SuDS features are to work in tandem to provide a cumulative surface water storage capacity of circa 549m³, with three HydroBrake flow control devices. The final hydrobrake on the proposed network will discharge the runoff from the site at a rate of 7.2 l/s. This proposed design achieves compliance with all previously stated regulations whilst considering the constraints of the site.

FOUL EFFLUENT

The total wastewater loading from the site will be 38.070/day, with a peak flow of 2.65/s.

WATERMAINS

The total volume of water required by the proposed development will be circa 41.877m³/day, with a peak flow of 0.288l/s.

APPENDIX A – TOPGRAPHICAL SURVEY

APPENDIX B – SITE INVESTIGATION REPORT

S.I. Ltd Contract No: 6338

Client: Westmeath County Council
Engineer: SDS Design Engineers
Contractor: Site Investigations Ltd

Cornamaddy Residential Development, Athlone, Co. Westmeath Site Investigation Report

Prepared by:
Stephen Letch

Issue Date:	18/10/2024
Status	Final
Revision	0

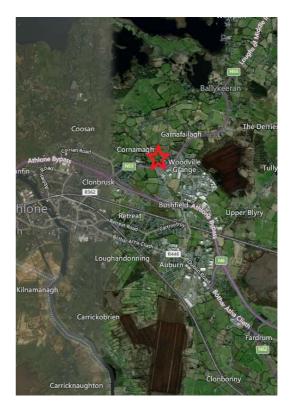
<u>6338 - Cornamaddy Housing Development</u> <u>Athlone, Co. Westmeath</u>

Contents:		Page No.
1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	3
5.	Ground Conditions	4
6.	Recommendations and Conclusions	5

Appendices:

- 1. Cable Percussive Borehole Logs
- 2. Trial Pit Logs with Dynamic Probe Results and Photographs
- 3. Soakaway Test Results and Photographs
- 4. Plate Load Test Results
- 5. Ground Probing Radar Survey Drawings
- 6. Geotechnical Laboratory Test Results
- 7. Environmental Laboratory Test Results
- 8. Waste Classification Report
- 9. Survey Data

1. Introduction


On the instructions of SDS Design Engineers, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Cornamaddy, Athlone, Co. Westmeath. The investigation was for a residential development on the site and was completed on behalf of the Client, Westmeath County Council. This investigation was completed in September 2024.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

The site is located off the Ballymahon Road to the north east of Athlone town centre. The first map below shows the location of Athlone in the midlands and the second map shows the location of the site to the north east of the town centre.

3. Fieldwork

All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design. The fieldworks comprised of the following:

- 12 No. cable percussive boreholes
- 12 No. trial pits
- 5 No. soakaway tests
- 10 No. plate load tests
- Ground Probing Radar Survey

3.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 12 No. locations using Dando 2000 rigs and constructed 200mm diameter boreholes. Three attempts were made at BH03 to advance the borehole as shallow obstructions were encountered at 2.00mbgl and 1.50mbgl before advancing to 7.30mbgl on the third attempt. The boreholes terminated at depths ranging from 5.80mbgl at BH04 to 10.20mbgl at BH10. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g., BH01 at 1.00mbgl where N=8-(1,1/1,2,2,3)). Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g., BH01 at 4.00mbgl where N=50-(25 for 140mm/50 for 50mm)).

At BH1 and BH11, a groundwater monitoring standpipe was installed to allow for equalisation of groundwater in the standpipe with a gravel response zone and bentonite seals at the top to prevent downward migration of water from the surface.

The cable percussive borehole logs are presented in Appendix 1.

3.2. Trial Pits

12 No. trial pits were excavated using a tracked excavator. The pits were logged and photographed by SIL geotechnical engineer and representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing. Any groundwater ingresses and pit wall stability were logged as the pits were excavated and then they were backfilled with the arisings upon completion.

The trial pit logs and photographs are presented in Appendix 2.

3.3. Soakaway Tests

At 5 No. locations, soakaway tests were completed and logged by SIL geotechnical engineer. BRE Special Digest 365 stipulates that the pit should be filled three times and that the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate, then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The soakaway test results and photographs are presented in Appendix 3.

3.4. Plate Load Tests

At 10 No. locations, plate tests were completed to provide a California Bearing Ratio value for pavement design. The tests were completed at 0.50mbgl, using the excavator as kentledge. Pressure is then added to a 600mm diameter plate, via a hydraulic jack, with the settlement of the plate measured using gauges. A correction value is then applied to the rate of settlement and this is used to calculate the CBR value for 1.25mm settlement of a 762mm plate.

The plate load test results are presented in Appendix 4.

3.5. Ground Probing Radar Survey

An underground service investigation has been completed using ground probing radar techniques by Metroscan. Surveys were completed at 10 No. areas as specified by the Engineer.

The Metroscan drawings are presented in Appendix 5.

3.6. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 9.

4. Laboratory Testing

Geotechnical laboratory testing was completed on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 6 No. Moisture contents
- 6 No. Atterberg limits
- 6 No. Particle size gradings
- 6 No. pH, sulphate and chloride content

Environmental testing was completed by ALS Environmental Ltd. and this allows for a Waste Classification report to be produced. The environmental testing consists of the following:

6 No. Suite I analysis

The geotechnical laboratory test results are presented in Appendix 6 with the environmental test results and Waste Classification report presented in Appendix 7 and 8 respectively.

5. Ground Conditions

5.1. Overburden

MADE GROUND was recorded in BH12 to 1.80mbgl and consisted of grey silty sandy gravel with high cobble content.

The natural ground conditions generally consist of cohesive CLAY and SILT soils overlying GRAVEL and occasionally SAND soils. With the boundary between the soil types between 1.50mbgl and 4.80mbgl. BH04 to the west of the site and BH12 to the south of the site only recorded cohesive CLAY soils throughout the borehole profile. The trial pits recorded similar conditions with CLAY and SILT initially encountered and GRAVEL encountered at TP02, TP03 and TP07, at 2.50mbgl, 2.00mbgl and 1.30mbgl respectively.

The SPT N-values vary across the site with values of 8 to 16 at 1.00mbgl and then 9 to 32 at 2.00mbgl, 13 to 36 at 3.00mbgl and 14 to 39 at 4.00mbgl.

Laboratory tests of the shallow cohesive soils from the boreholes confirm that CLAY soils dominate the site with low to high plasticity indexes of 11% to 26% recorded. The particle size distribution curves were poorly sorted straight-line curves with 26% to 84% fines content in the cohesive soils.

5.2. Groundwater

Groundwater ingresses were recorded in six of the boreholes, with ingresses recorded from 1.70mbgl at BH04 to 3.80mbgl at BH01 and BH08. The initial strikes at BH04 and BH10 sealed off and then water re-entered both boreholes at 4.50mbgl and 5.50mbgl respectively.

Three trial pits, TP02, TP03 and TP05, recorded groundwater ingresses at 2.50mbgl, 2.00mbgl and 1.40mbgl, with ingress rates recorded as seepages.

6. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

MADE GROUND was encountered at BH12 to 1.80mbgl. SIL do not recommend that narrow shallow foundations are placed on fill material due to the unknown compaction methods used during laying of man-made material. This unknown could result in softer spots and differential settlement once construction is completed. If shallow foundations are to be used and man-made soils are encountered below foundation level, then the soil should be removed and replaced with engineered fill which is compacted to the required standard.

For cohesive soils, a correlation proposed by Stroud and Butler between SPT N-values and plasticity indices can be used to calculate the undrained shear strength. Dependent on the plasticity index at each site, the Stroud and Butler correlation is C_u =4 to 6N. With the low to high plasticity indexes recorded in the laboratory for the soils on this site, the correlation chosen is C_u =5N. The C_u value can then be used to calculate the ultimate bearing capacity, which is the total loading that the soil could withstand but then a factor of safety is used to ensure that failure of the soils does not occur. A factor of safety of 3 has been chosen for this site.

In granular soils, the N_{100} value is used to correlate the SPT N-value. The SPT N-value can then be used to calculate the allowable bearing capacity, as per Terzaghi and Peck, using the correlation of SPT N-value x 10 = ABC.

The table below shows the SPT N-value, C_u , the ultimate bearing capacity and finally, the allowable bearing capacities at 1.00mbgl, 2.00mbgl and 3.00mbgl. For the refusals, no bearing capacity is calculated. The C_u , ultimate bearing capacity and allowable bearing capacities are in kN/m^2 .

Depth		BH	101			BH	102			BH	03B	
	N-	Cu	UBC	ABC	N-	Cu	UBC	ABC	N-	Cu	UBC	ABC
	Value				Value				Value			
1.00	8	40	222	74	11	55	299	100	15	75	401	134
2.00	19	95	521	174	11	55	317	106	19	-	-	190
3.00	36	180	972	324	14	70	411	137	31	-	-	310
Depth		BH	104			BH	105			BH	106	
	N-	Cu	UBC	ABC	N-	Cu	UBC	ABC	N-	Cu	UBC	ABC
	Value				Value				Value			
1.00	12	60	324	108	8	40	222	74	13	65	350	117
2.00	15	75	419	140	15	75	419	140	29	-	-	290
3.00	22	110	615	205	13	65	386	129	_1	_1	_1	_1
Depth	BH07				BH08				BH	109		
	N-	Cu	UBC	ABC	N-	Cu	UBC	ABC	N-	Cu	UBC	ABC
	Value				Value				Value			
1.00	12	60	324	108	11	55	299	100	15	75	401	134
2.00	13	65	368	123	_1	_1	_1	_1	32	-	-	320
3.00	20	100	564	188	34	-	-	340	34	-	-	340
Depth	BH10				BH	111			BH	112		
	N-	Cu	UBC	ABC	N-	Cu	UBC	ABC	N-	Cu	UBC	ABC
	Value				Value				Value			
1.00	16	80	426	142	9	45	248	83	_2	_2	_2	_2
2.00	15	75	419	140	9	45	266	89	21	105	572	191
3.00	21	-	-	210	15	75	437	146	15	75	437	146

Key:

- -1: Refusal
- -2: MADE GROUND

It would be recommended that all founding strata be inspected by a suitably qualified Engineer prior to pouring the foundations and additional insitu testing completed if required to confirm the soils are suitable for the final foundation design.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- Foundations are to be constructed on a level formation of uniform material type.
- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- Based on groundwater observations this analysis assumes the groundwater will not influence the construction or performance of these foundations.
- All bearing capacity calculations allow for 25mm settlement.

The trial pit walls generally remained stable but recorded minor pit all instability, with only three locations remaining stable throughout the excavation. Therefore, it would be recommended that all excavations should be checked immediately and battered back accordingly with regular inspection of temporary excavations completed during construction to ensure that all slopes are stable. Temporary support should be considered on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, groundwater was recorded in six of the twelve boreholes and three of the twelve trial pits during the fieldworks. There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. Based on this information at the exploratory hole locations to date, it is considered likely that any shallow ingress (less than 2.00mbgl) into excavations of the CLAY will be slow. If granular lenses are encountered in shallow excavations, then the possibility of water ingressing into an excavation increase with a higher ingress rate.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Soakaway Test

Four of the soakaway tests failed the specification as the water level did not fall sufficiently enough to complete the test. The BRE Digest stipulates that the pit should half empty within 24hrs, and extrapolation indicates this condition would not be satisfied. The tests were terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation.

INF02 was completed in shallow GRAVEL soils and this recorded a f-value of 4.11x10⁻⁵m/s. It would be recommended that any soakaways are targeted to areas with shallow granular soils.

6.4. Pavement Design

The plate tests completed on the natural CLAY soils recorded values ranging from 8.5% to 20.4%. PLT09 was completed on MADE GROUND consisting of gravel and this records a higher value of 37.6%

Inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

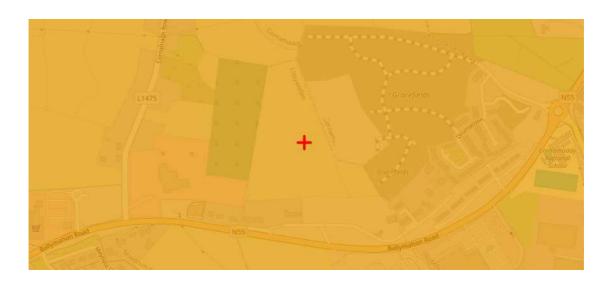
6.5. Contamination

Environmental testing was completed on six samples from the investigation and the results are provided in Appendix 7. For material to be removed from site, Suite I testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report created using HazWasteOnline™ software shows that the material tested can be classified as non-hazardous material.

Following this analysis of the solid test results, the leachate disposal suite results showed that the determinands remained within the Inert waste thresholds. The sample from TP11 recorded a Total Organic Carbon value 0.16% above the inert threshold but this could be from natural sources and therefore may not be as a result of any contamination.

Six samples were tested for analysis but it cannot be discounted that any localised contamination may have been missed. Any MADE GROUND excavated on site should be stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.


6.6. Aggressive Ground Conditions

The chemical test results in Appendix 6 indicate a general pH value between 8.79 and 9.07, which is close to neutral and below the level of 9, therefore no special precautions are required.

The maximum value obtained for water soluble sulphate was 133 mg/l as SO_3 . The BRE Special Digest 1:2005 - `Concrete in Aggressive Ground' guidelines require SO_4 values and after conversion ($SO_4 = SO_3 \times 1.2$), the maximum value of 160 mg/l shows Class 1 conditions and no special precautions are required.

6.7. Radon Gas

The Environmental Protection Agency (EPA) has recently updated the Radon gas exposure map and this is available to view on the EPA website. This shows the possible exposure to radon gas with the bedrock geology, subsoil geology, soil permeability and aquifer type analysed to produce the map. The map below shows that the site falls within the medium level of 1 in 10 homes have possible radon exposure. Measures should be taken in the form of radon protection barriers to protect from radon exposure in the new structure.

Appendix 1 Cable Percussive Borehole Logs

Contract No 6338	Cable Percussion	n Bo	rel	nole	Lo	g		В	orehole BH0	
Contract:	Cornamaddy Housing Development	Easting	:	605924	1.007		Date Started:	10/09	9/2024	
_ocation:	Athlone, Co. Westmeath	Northin	g:	742865	5.924		Date Completed:	10/09	9/2024	
Client:	Westmeath County Council	Elevation	on:	43.97			Drilled By:	J. O'	Toole	
Engineer:	SDS Design Engineers	Boreho		200mm	1		Status:	FINA	L	
Depth (m)	Stratum Description	Legend		(mOD)			and Insitu Tes		Water	Backfi
Scale Dept	TORSOIL	\(\lambda\)\(\lambda\)\(\lambda\)	Scale	Depth	Depth	Туре	Result		Strike	\\/\\\\/.
0.20	Brown slightly sandy slightly gravelly silty CLAY.	<u> </u>	43.5 -	43.77						
0.60	Firm brown grey slightly sandy slightly gravelly silty CLAY.	X X	-	43.37						
1.0		X X X	43.0 —	42.77	1.00 1.00	B C	JOT35 N=8 (1,1/1,2			
1.5	Firm grey slightly sandy slightly gravelly silty CLAY.	XX	42.5					,		
2.0	Stiff becoming very stiff grey blue slightly sandy	×	42.0 —	42.17	2.00	В	JOT36	:		
2.0	slightly gravelly silty CLAY.	XX	-		2.00	C	N=19 (2,3/4,			
2.5		X-:X	41.5 -	-						
3.0		× × ×	41.0		3.00	В	JOT37	,		
2.5		×	40.5 -		3.00	С	N=36 (2,5/7,9,9	,11)	_	
3.5 - 3.80		X X	+0.0 - - -	40.17						
4.0	Grey slightly sandy slightly gravelly silty CLAY with low cobble content.	× 0 × 0	40.0		4.00 4.00	B C	JOT38 50 (25 fe			
4.5		× 0 × 0	39.5		1.00		140mm/50 50mm) for		
4.80	Dense grey brown silty sandy GRAVEL with high		20.0	39.17						
5.0	cobble content.	a × , a × , 0	39.0 —		5.00 5.00	B C	JOT39 N=50 (6,11/	50 for		
5.5		** , a× ,	38.5				255mm	1)		
6.0		**************************************	38.0	-	6.00	В	JOT40)		
6.20	Obstruction - possible boulders.	0 0		37.77 37.57	6.00 6.40	C	50 (25 fo	or		
6.5	End of Borehole at 6.40m		37.5 -	07.07	0.10		95mm) 50 (25 fe)		
7.0 —			37.0				5mm/50 for			
7.5			36.5							
=			36.0	-						
8.0			30.0 -							
8.5			35.5							
9.0			35.0							
			34.5							
9.5 —			0 4 .0 = -							
10.0			34.0							
10.5			33.5							
=										
	Chiselling: Water Strikes: Water Details:	Install	ation:		Backfill:		Remarks:		Legend:	
	From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: Depth	From: To		e: From:	To: Typ		orehole terminate	d due	B: Bulk D: Disturk U: Undist	
	4.20 4.40 01:00 3.80 3.60 NS 10/09 6.40 1.80 6.20 6.40 01:30 3.80 3.60 NS 10/09 6.40 1.80			0.00	AIIS	iigs it	. 5500 000011.		ES: Envir W: Water	onmental
									C: Cone S S: Split sp	

Contract N 6338		Cable Percussio	n Bo	orel	nole	Log	g		В	orehole BH0	
Contract:		Cornamaddy Housing Development	Easting	j:	605877	7.411		Date Started:	09/09	/2024	
Location:		Athlone, Co. Westmeath	Northin	g:	742952	2.515		Date Completed:	09/09)/2024	
Client:		Westmeath County Council	Elevation	on:	44.02			Drilled By:	D. Cl	arke	
Engineer:		SDS Design Engineers	Boreho		200mm	1		Status:	FINA	L	
Depth (n		Stratum Description	Legend		(mOD)			and Insitu Tes	ts	Water Strike	Backfi
Scale De	epth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5	.40	Firm grey brown slightly sandy slightly gravelly silty CLAY with low cobble content.	×	43.5	43.62						
1.0			× 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	43.0		1.00 1.00	B C	DC27 N=11 (2,3/3,	2,3,3)		
1.5 = 1.	.50	Firm grey slightly sandy slightly gravelly clayey SILT.	× × × × × × × × × × × × × × × × × × ×	42.5	42.52						
2.0 -			× × × × × × × × × × × × × × × × × × ×	42.0		2.00 2.00	B C	DC28 N=11 (2,2/3,	3,2,3)		
2.5			X X X X X X X X X X X X X X X X	41.5							
3.0				41.0		3.00	B C	DC29 N=14 (2,3/3,	3,4,4)		
3.5 - 3.	.90	Madium dance group site conducCDAVCL with high	× × × × × × × × × × × × × × × × × × ×	40.5 -	40.12	4.00	Б	D020			
4.0		Medium dense grey silty sandy GRAVEL with high cobble content.	4 X 4 X 0	40.0		4.00 4.00	B C	DC30 N=19 (4,4/4,	5,5,5)		
5.0	.60	Dense grey brown silty sandy GRAVEL with high cobble content.	4 × 4 × 0	39.5 — - - 39.0 —	39.42	5.00	В	DC31			
5.5			**************************************	38.5	-	5.00	C	N=29 (6,7/7,	7,7,8)		
6.0			, a x , a x , 0	38.0		6.00	В	DC32	7.0.0\		
6.5			, a X , b a X , 0	37.5		6.00	С	N=31 (5,6/7,	7,8,9)		
7.0 -			**************************************	37.0		7.00 7.00	B C	DC33 N=29 (6,6/7,	7.7.8)		
7.5			**************************************	36.5	-				,		
8.0 —			** * * * * * * * * * * * * * * * * * *	36.0		8.00 8.00	B C	DC34 N=35	40)		
8.5			**************************************	35.5				(5,6/8,8,9,	10)		
	.30	Obstruction - possible boulders.	**************************************	35.0	34.72	9.00 9.00 9.40	B C C	DC35 50 (7,8/50 125mm			
=	.40	End of Borehole at 9.40m		34.5	34.62	0.40	J	50 (25 for 5mm/50 for	or		
10.0				34.0 —							
\$)	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Details: 3.70 3.80 01:00 09/09 9.40 Dry 7.50 7.70 01:00 09/09 9.40 Dry	Install From: To			Backfill: To: Typ 0.40 Arisin		Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Enviro W: Water C: Cone S	urbed onmenta

Contra		Cable Percussio	n Boı	reh	ole	Lo	g		В	orehole BH0	
Contrac	ot:	Cornamaddy Housing Development	Easting:		606014	.395		Date Started:	30/08	3/2024	
Locatio	n:	Athlone, Co. Westmeath	Northing:		742728	3.004		Date Completed:	30/08	3/2024	
Client:		Westmeath County Council	Elevation	:	45.34			Drilled By:	D. Cla	arke	
Engine	er:	SDS Design Engineers	Borehole Diameter:	:	200mm	1		Status:	FINA	L	
Depth		Stratum Description	Legena		(mOD)			and Insitu Tes		Water Strike	Backfil
Scale _	Depth	TOPSOIL.	S	cale	Depth	Depth	Туре	Result		Otriko	
0.5	0.20	Brown slightly sandy slightly gravelly silty CLAY with low cobble content.	2 × 0 € 4	15.0 -	45.14						
1.0	0.70	Stiff light brown slightly sandy slightly gravelly silty CLAY with low cobble content.	0.00	- 4.5	44.64	1.00	В	DC01			
=			× × · · · × · · ×	- 14.0 —		1.00	Ċ	N=16 (2,4/5,	4,4,3)		
1.5	1.60 1.80	Grey silty sandy GRAVEL with high cobble content.		- - 13.5 —	43.74 43.54						
2.0	2.00	Obstruction - boulders. End of Borehole at 2.00m		13.5 —	43.34	2.00	С	50 (25 fo 5mm/50 for			
2.5			4	13.0					O,		
3.0			4	12.5 —							
3.5			4	12.0 —							
=			4	11.5							
4.0				- - 11.0 —							
4.5											
5.0			4	10.5 — — —							
5.5			4	10.0 -							
6.0			3	9.5 <u> </u>							
=			3	39.0							
6.5				- - - - 							
7.0				=							
7.5			3	38.0 — - -							
8.0			3	37.5 - -							
8.5 —			3	37.0 -							
=			3	- 36.5 —							
9.0			3	36.0 —							
9.5				=							
10.0			3	35.5 — - - -							
10.5			3	35.0 — 							
=			3	34.5							
		Chiselling: Water Strikes: Water Details:	Installati	on:		Backfill:		Remarks:		Legend:	
			From: To:	Pipe	: From: 1	To: Typ .00 Arisi	ngs to	orehole terminated o obstruction, bore elocated and reatted ande.	hole	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussio	n Bo	orel	nole	Lo	g			orehole BH03	
Contrac	ot:	Cornamaddy Housing Development	Easting	:	606014	1.819		Date Started:	30/08	3/2024	
Locatio	n:	Athlone, Co. Westmeath	Northin	g:	742726	6.802		Date Completed:	30/08	3/2024	
Client:		Westmeath County Council	Elevation	on:	45.36			Drilled By:	D. Cla	arke	
Engine	er:	SDS Design Engineers	Boreho Diamet		200mm	ı		Status:	FINA	L	
Depth		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfil
Scale -	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Ounc	
0.5	0.20	Brown slightly sandy slightly gravelly silty CLAY with low cobble content.	× 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	45.0	45.16						
1.0	0.90	Stiff light brown slightly sandy slightly gravelly silty CLAY with low cobble content.	*	44.5	44.46	1.00	С	N=50 (2,3/5 245mm	50 for		
1.5	1.40 1.50	Obstruction - boulders. End of Borehole at 1.50m		44.0	43.96 43.86	1.50	С	50 (25 fo 5mm/50 for	or		
2.0				43.5					0111111)		
2.5				43.0	-						
3.0				42.5							
3.5				42.0							
4.0				41.5							
4.5				41.0	-						
5.0				40.5							
=				40.0							
5.5 —				39.5							
6.0				39.0 —							
6.5				38.5							
7.0				=							
7.5				38.0 —							
8.0				37.5 —							
8.5				37.0 —							
9.0				36.5							
9.5				36.0							
10.0				35.5							
10.5				35.0							
				34.5							
		Chiselling: Water Strikes: Water Details:	Install	ation:		Backfill:		Remarks:		Legend:	
			From: To		e: From:	To: Typ	ings to	orehole terminated o obstruction, bore elocated and reatted ande.	hole	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra 633		Cable Percussion	n Bo	orel	nole	Log	g			orehole BH03	
Contrac	t:	Cornamaddy Housing Development	Easting	j :	606015	5.542		Date Started:	02/09)/2024	
_ocatio	n:	Athlone, Co. Westmeath	Northir	ıg:	742725	5.737		Date Completed:	02/09)/2024	
Client:		Westmeath County Council	Elevati	on:	45.37			Drilled By:	D. CI	arke	
Engine	er:	SDS Design Engineers	Boreho		200mm	า		Status:	FINA	L	
Depth	n (m)	Stratum Description	Legend	Level	(mOD)	Sar	nples	and Insitu Tes	ts	Water	
Scale	Depth	·	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Scale	Depth	Depth	Туре	Result		Strike	×//×\//
0.5	0.20 0.40	TOPSOIL. Brown slightly sandy slightly gravelly silty CLAY with high cobble content.		45.0 —	45.17 44.97						
=	0.80	Brown slightly sandy slightly gravelly silty CLAY with low cobble content.		44.5 —	44.57			5.000			
1.0		Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content.	× × ·	44.0		1.00 1.00	B C	DC02 N=15 (2,2/4,			
1.5	1.80		× × × ×	- - -	43.57						
2.0	1.00	Medium dense brown silty sandy GRAVEL with low cobble content.	a X , a X , 0	43.5 – - -	43.37	2.00 2.00	B C	DC03 N=19 (4,5/5,			
2.5	2.60	Dense grey brown silty sandy GRAVEL with high	a X P 9 X 9	43.0	42.77			,,,,,,,	-, ,-,		
3.0		cobble content.	a × ° a × °	42.5 -		3.00	В	DC04			
3.5			a X , a X , b	42.0 —		3.00	С	N=31 (6,6/7,	8,8,8)		
4.0			*a × * a × *) *a × * a × *) *a × * a × *)	41.5		4.00	В	DC05			
=			a X	41.0		4.00	Ċ	N=32 (5,7/9,	8,8,7)		
4.5 —				40.5 -	-		_				
5.0			a X . a X . 0	40.0		5.00 5.00	B C	DC06 N=33 (6,6/7,			
5.5 —			**************************************	39.5 —							
6.0			* × * * * * * * * * * * * * * * * * * *	-		6.00 6.00	B C	DC07 N=36			
6.5 -				39.0 —				(7,8/8,9,9,	,10)		
7.0	7.10	Obstruction - possible boulders.		38.5 -	38.27	7.00 7.00	B C	DC08 50 (25 fc	or		
7.5	7.30	End of Borehole at 7.30m		38.0	38.07	7.30	Č	95mm/50 25mm)	for)		<u> </u>
8.0				37.5				50 (25 for 5mm/50 for			
8.5				37.0							
9.0				36.5							
9.5				36.0							
=				35.5							
10.0				35.0 —							
10.5				34.5							
-		Chicolling: Water Striken: Water Datailer	Incts			Packelli		Domanica		l agond:	
A		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Date: Hole Death: Dea		lation: o: Pipe		Backfill: To: Typ	e: F	Remarks:	d due	Legend: B: Bulk D: Disturb	ned
(3)		Company Comp				7.30 Arisi		o obstruction.		U: Undist ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussio	n Bo	orel	nole	Lo	g		В	orehole BH04	
Contrac	ot:	Cornamaddy Housing Development	Easting	g:	605856	5.386		Date Started:	10/09	9/2024	
Locatio	n:	Athlone, Co. Westmeath	Northir	ng:	742828	3.473		Date Completed:	10/09	9/2024	
Client:		Westmeath County Council	Elevati	on:	44.01			Drilled By:	D. Mo	cEoin	
Engine	er:	SDS Design Engineers	Boreho		200mm	า		Status:	FINA	L	
Depth	. ,	Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfill
Scale	Depth	TOPSOIL.	X//XX///	Scale	Depth	Depth	Туре	Result		Suike	X//XX//X
0.5		Brown slightly sandy slightly gravelly silty CLAY with low cobble content.	× × 0	43.5	43.81						
1.0	0.70	Firm brown grey slightly sandy slightly gravelly silty CLAY with medium cobble content.	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	43.0	43.31	1.00	В	DMc01			
1.5			× × ·	42.5		1.00	С	N=12 (1,2/2,	3,3,4)		
	1.70	Firm becoming stiff brown grey slightly sandy slightly	0 2 0	-	42.31						
2.0		gravelly silty CLAY with low cobble content.	× × ·	42.0 —	-	2.00	B C	DMc02 N=15 (2,2/3,			
2.5			<u> </u>	41.5							
3.0			× × 0	41.0		3.00 3.00	B C	DMc03 N=22 (3,2/5,			
3.5			× × 0	40.5							
4.0			× × 0	40.0		4.00 4.00	B C	DMc04 N=30 (2,5/8,	ļ 707\		
4.5				39.5		4.00		N-30 (2,5/6,	,		
5.0	4.80	Very stiff grey slightly sandy gravelly silty CLAY with medium cobble content.	******	39.0 —	39.21	5.00	В	DMc05			
5.5	5 00	medium coppie content.		38.5 –	00.44	5.00	С	50 (5,8/50 225mm			
6.0	5.60 5.80	Obstruction - possible boulders. End of Borehole at 5.80m	0,00	38.0	38.41 38.21	5.80	С	50 (25 fo			
6.5									0111111		
=				37.5 -							
7.0 —				37.0 —							
7.5 —				36.5 —							
8.0 —				36.0							
8.5 -				35.5							
9.0				35.0							
9.5				34.5							
10.0				34.0							
10.5				33.5	-						
		Chiselling: Water Strikes: Water Details:	Instal	lation:	<u> </u>	Backfill:		Remarks:		Legend:	
		Don't Hale Marker		o: Pipe		То: Ту		orehole terminated obstruction.	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S	urbed onmental

Contract No: 6338	Cable Percussion	n Bo	reh	ole	Log	J			rehole BH0	
Contract:	Cornamaddy Housing Development	Easting:		605888	.970		Date Started:	10/09	/2024	
ocation:	Athlone, Co. Westmeath	Northing	:	742863	.148		Date Completed:	10/09	/2024	
Client:	Westmeath County Council	Elevation	n:	43.94			Drilled By:	D. Cla	arke	
Engineer:	SDS Design Engineers	Borehole		200mm	l		Status:	FINAL	_	
Depth (m)	Stratum Description	Legend	_evel	(mOD)			and Insitu Tes	ts	Water	Back
Scale Depth	TOPSOIL.	\$(//8\\//8	Scale	Depth	Depth	Туре	Result		Strike	V//XX
1.0 — 1.60 2.0 — 3.5 — 3.80 4.0 — 3.80 4.5 — 4.40 5.0 — 6.5 — 6.0 — 7.0 — 7.5 — 8.0 — 8.5 —	Firm grey brown slightly sandy slightly gravelly silty CLAY with low cobble content. Firm grey slightly sandy slightly gravelly clayey SILT. Medium dense grey silty sandy GRAVEL with high cobble content. Medium dense becoming dense grey brown silty sandy GRAVEL with high cobble content.		43.5 — 43.0 — 42.5 — 42.0 — 41.5 — 41.0 — 40.5 — 39.5 — 38.5 — 37.5 — 36.5 — 35	42.34 42.34 40.14 39.54	1.00 1.00 2.00 2.00 3.00 3.00 4.00 4.00 5.00 5.00 6.00 7.00 7.00 8.00 8.00	BC BC BC BC BC BC	DC36 N=8 (2,2/2,2 DC37 N=15 (2,3/3, DC38 N=13 (3,3/3, DC39 N=26 (4,5/6, DC40 N=27 (5,6/6, DC41 N=31 (6,7/8, DC42 N=38 (5,7/8,9,10 DC43 N=34 (8,9/8,	4,4,4) 3,4,3) 6,7,7) 7,7,7)		
9.0 — 8.90 9.5 — 10.0 — 10.5	Obstruction - possible boulders. End of Borehole at 8.90m		35.0	35.24 35.04	8.90	С	50 (25 fc 5mm/50 for !			
	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Details: 3.60 3.70 01:00 10/09 8.90 Dry 8.70 8.90 01:30 01:00	Installa From: To:		E From: 7			Remarks: orehole terminated obstruction.		Legend: B: Bulk D: Disturb U: Undistr ES: Envirr W: Water C: Cone S S: Split sp	urbed onment SPT

Contra		Cable Percussion	n Bo	reh	nole	Lo	g		В	orehole BH0	
Contrac	:t:	Cornamaddy Housing Development	Easting	:	605898	3.822		Date Started:	05/09	/2024	
Locatio	n:	Athlone, Co. Westmeath	Northin	g:	742785	5.271		Date Completed:	05/09	/2024	
Client:		Westmeath County Council	Elevation	n:	44.21			Drilled By:	J. O'7	Toole	
Enginee	er:	SDS Design Engineers	Borehol Diamete		200mm	1		Status:	FINA	L	
Depth		Stratum Description	Legend		(mOD)			and Insitu Tes	ts	Water Strike	Backfi
Scale _	Depth 0.20	TOPSOIL. Firm brown slightly sandy slightly gravelly silty CLAY.		Scale	Depth 44.01	Depth	Туре	Result		Ounto	
0.5		The state of the s		43.5 —		1.00 1.00	B C	JOT17 N=13 (1,2/3,	3,3,4)		
2.0	2.00	Brown grey slightly sandy slightly gravelly silty CLAY with high cobble content. Medium dense becoming dense grey brown silty	X 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	42.5 — 42.0 —	42.61 42.21	2.00 2.00	B C	JOT18 N=29 (2,5/7,			
2.5		sandy GRAVEL with high cobble content.		41.5 —		3.00 3.00	ВС	JOT19 50 (5,7/50 100mm	for		
4.0				40.5		4.00 4.00	B C	JOT20 N=33 (3,5/7,7,9,	,		
5.0				39.5 —		5.00 5.00	B C	JOT21 50 (25 fo 125mm/50 20mm)	or) for		
6.5	6.10 6.20	Obstruction - possible boulders. End of Borehole at 6.20m	**************************************	38.0 —	38.11 38.01	6.00 6.00 6.20	B C C	JOT22 50 (25 fc 105mm/50 15mm) 50 (25 fc	or) for		
7.0 -				37.0				5mm/50 for 9	5mm)		
8.0				36.5							
8.5				36.0 —							
9.0				35.5 —							
9.5				35.0							
10.0				34.5							
10.5				34.0							
		Chiselling: Water Strikes: Water Details:	Installa	ation:	E	Backfill:		Remarks:		Legend:	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: 1.80 2.00 01:00 1.80 1.60 NS 05/09 6.20 1.50 4.60 5.00 01:30 NS 05/09 6.20 1.50	From: To	: Pipe	e: From: - 0.00 6	To: Typ 5.20 Arisi		orehole terminated obstruction.	d due	B: Bulk D: Disturk U: Undist ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra 633		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ot:	Cornamaddy Housing Development	Easting):	605831	1.519		Date Started:	06/09	/2024	
Locatio	n:	Athlone, Co. Westmeath	Northin	g:	742793	3.085		Date Completed:	06/09	/2024	
Client:		Westmeath County Council	Elevation	on:	44.20			Drilled By:	J. O'7	Toole	
Engine	er:	SDS Design Engineers	Boreho Diamet		200mm	1		Status:	FINA	L	
Depth		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	
Scale _	Depth 0.20	TOPSOIL.		Scale 44.0	Depth 44.00	Depth	Туре	Result		Strike	
0.5	0.20	Firm brown slightly sandy slightly gravelly silty CLAY.	× x × x	43.5	44.00						
1.0			×	43.0	-	1.00 1.00	B C	JOT23 N=12 (1,1/2,			
1.5	1.60	Grey silty sandy GRAVEL with high cobble content.	× ×	42.5	42.60						
2.0	2.00	Stiff brown slightly sandy slightly gravelly silty CLAY with low cobble content.	× × × × × × × × × × × × × × × × × × ×	42.0	42.20	2.00 2.00	B C	JOT24 N=13 (1,2/2,			
3.0			0 X 0 X 0 X 0 X	41.5	-	3.00	В	JOT25			
3.5				41.0 —		3.00	С	N=20 (2,3/5,	5,5,5)		
4.0			X X 0 C	40.0	-	4.00 4.00	ВС	JOT26 N=28 (2,4/5,			
4.5	4.50	Dense grey brown silty sandy GRAVEL with high cobble content.	* × ° ° ×	39.5	39.70						
5.0 —			4 X 9 9 X 9 4 X 9 4 X 9 4 X 9 4 X 9 4 X 9 4 X 9 4 X 9 X 9	39.0		5.00 5.00	B C	JOT27 50 (25 fo 100mm/50	or) for		
6.0			4 × 4× 0	38.5 -		6.00	В	30mm) JOT28			
6.5	6.30 6.50	Obstruction - possible boulders. End of Borehole at 6.50m	0 0	38.0 — - - 37.5 —	37.90 37.70	6.00 6.50	C	50 (25 fo 130mm/50 40mm) 50 (25 fo) for		
7.0				37.0	-			5mm/50 for			
7.5				36.5							
8.0				36.0							
8.5				35.5							
9.0 —				35.0							
10.0				34.5	-						
10.5				34.0							
=				=							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth Details: Water Details: 1.90 2.00 01:00 2.00 1.70 NS 06/09 6.50 1.60 4.50 4.70 01:00 01:00 01:00 00:00	Install			Backfill: To: Typ		Remarks: orehole terminated o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undist ES: Envir W: Water C: Cone S	urbed onmental

Contra		Cable Percussio	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ot:	Cornamaddy Housing Development	Easting	j :	605829	9.184		Date Started:	09/09	/2024	
Location	n:	Athlone, Co. Westmeath	Northin	g:	742873	3.111		Date Completed:	09/09	/2024	
Client:		Westmeath County Council	Elevation	on:	44.01			Drilled By:	J. O'	Toole	
Engine	er:	SDS Design Engineers	Boreho		200mm	1		Status:	FINA	L	
Depth		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water Strike	Backfill
Scale _	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5	0.20	Brown slightly sandy slightly gravelly silty CLAY.	X-X-X	43.5	43.81						
1.0	0.80	Firm brown grey slightly sandy slightly gravelly silty CLAY.	× × × × × × × × × × × × × × × × × × ×	43.0	43.21	1.00	B C	JOT29 N=11 (1,1/2,			
1.5			X X	42.5 —	-			,,,,,,,	,_,-,-,		
2.0	2.10	Dense grey brown silty sandy GRAVEL with high	* * * * * * * * * * * * * * * * * * *	42.0	41.91	2.00 2.00	B C	JOT30 50 (25 f	or		
2.5		cobble content.	a X	41.5				110mm/50 25mm			
3.0			a X . a X . 0	41.0		3.00 3.00	B C	JOT31 N=34 (2,5/7,7,9			
3.5			a × , a × 0	40.5							
4.0			4 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.0 —	-	4.00	B C	JOT32 50 (3,7/50 125mm) for		
4.5 —			a × a× 0	39.5 — - - 39.0 —		5.00	В	JOT33	R		
5.5			4 × 9 × 0	38.5		5.00	C	50 (9,14/5) 100mm	0 for		
6.0			a × ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	38.0		6.00	В	JOT34			
6.5	6.30 6.50	Obstruction - possible boulders. End of Borehole at 6.50m	0 0	37.5 —	37.71 37.51	6.00	C	50 (8,9/50 190mm 50 (25 fe	ı) or		
7.0				37.0				5mm/50 for	5mm)		
7.5				36.5							
8.0				36.0							
8.5 —				35.5	-						
9.0				35.0							
9.5				34.5							
10.0				34.0 —	-						
10.5				33.5 —							
		Chiselling: Water Strikes: Water Details:	Install	ation:		Backfill:		Remarks:		Legend:	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: D	From: To		e: From:			Forehole terminate o obstruction.		B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S	urbed onmental

Contra 63		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ot:	Cornamaddy Housing Development	Easting	j:	605943	3.123		Date Started:	04/09	9/2024	
_ocatio	n:	Athlone, Co. Westmeath	Northin	g:	742698	3.203		Date Completed:	04/09	9/2024	
Client:		Westmeath County Council	Elevation	on:	46.66			Drilled By:	D. Cla	arke	
Engine	er:	SDS Design Engineers	Boreho		200mm	า		Status:	FINA	L	
Depth	n (m)	Stratum Description	Legend	Level	(mOD)	Sai	mples	and Insitu Tes	ts	Water	
Scale	Depth	·		Scale	Depth	Depth	Туре	Result		Strike	\//\\\/
0.5	0.30	TOPSOIL. Firm brown slightly sandy gravelly silty CLAY with	F - 2 - X	46.5 – -	46.36						
		high cobble content.	× × ×	46.0	1						
1.0			×	-		1.00	В	DC09			
=			× × 0.5	45.5 -		1.00	С	N=15 (2,3/3,	4,4,4)		
1.5 —	1.50	Dense brown silty slightly gravelly SAND with low cobble content.	× × × × × × × × × × × × × × × × × × ×	45.0	45.16						
2.0			* * * * * * * * * * * * * * * * * * *	44.5		2.00 2.00	B C	DC10 N=32 (7,8/8,			
2.5	2.00		* * * * * * * * * * * * * * * * * * *	44.0	40.00						
3.0	2.80 3.10	Brown silty sandy GRAVEL with high cobble content.	a× ,a× ,	=	43.86 43.56	3.00	В	DC11			
3.5	3.10	Dense grey brown silty sandy GRAVEL with high cobble content.	**************************************	43.5 -	43.30	3.00	С	N=34 (6,7/8,7,9,	,10)		
4.0			4 × 4 × 9	43.0 —		4.00	В	DC12			
			* * * * * * * * * * * * * * * * * * *	42.5		4.00	Č	N=39 (7,7/8,9,10			
4.5			**************************************	42.0			_				
5.0			**************************************	41.5		5.00 5.00	B C	DC13 N=32 (5,7/7,			
5.5 —			**************************************	41.0							
6.0			**************************************	40.5		6.00 6.00	B C	DC14 N=30 (6,6/7,	7,7,9)		
6.5			a × a × a	40.0							
7.0			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	39.5		7.00 7.00	B C	DC15 N=33 (7,9/8,	8,8,9)		
7.5			4 × 4 × 1	39.0							
8.0				38.5		8.00 8.00	B C	DC16 N=31 (8,8/7,	8,8,8)		
8.5			**************************************	38.0							
9.0			**************************************	37.5		9.00 9.00	B C	DC17 N=32 (7,8/7,	8,8,9)		
9.5	9.70		, a × a × a	37.0	36.96						
10.0	9.80	Obstruction - possible boulders. End of Borehole at 9.80m		36.5 -	36.86	9.80	С	50 (25 for 5mm/50 for 5			
10.5				36.0							
_		Chiselling: Water Strikes: Water Details:	Install	ation:		Backfill:		Remarks:		Legend:	
		Doub Hale Makes	From: To		e: From:	To: Typ		orehole terminated obstruction.	d due	B: Bulk D: Disturb U: Undist ES: Envir W: Water C: Cone S	urbed onmental SPT

Contra 63	oct No: 38	Cable Percussion	n Bo	oreł	nole	Log	3		В	orehole BH1	
ontrad	ct:	Cornamaddy Housing Development	Easting	:	605946	6.997		Date Started:	03/09	/2024	
catio	n:	Athlone, Co. Westmeath	Northin	g:	742786	8.081		Date Completed:	04/09	/2024	
ient:		Westmeath County Council	Elevation	on:	44.27			Drilled By:	J. O'7	Toole	
gine	er:	SDS Design Engineers	Boreho Diamet		200mm	1		Status:	FINA	L	
	n (m)	Stratum Description	Legend		(mOD)			and Insitu Tes	ts	Water Strike	Bacl
ale -	Depth	Brown grey slightly sandy slightly gravelly silty CLAY.	×	Scale	Depth	Depth	Type	Result		Otrike	
0.5			XX-X	44.0 —							
	0.80	Medium dense light grey sandy SILT.	× × × ×	43.5	43.47	4.00	_	10707			
0.			(43.0		1.00 1.00	B C	JOT07 N=16 (2,3/4,4			
.5 =	1.50	Brown grey slightly sandy slightly gravelly silty CLAY.	× × × ×		42.77						
.0.	1 00	Firm dark grey slightly sandy slightly gravelly silty	X-:-X	42.5	42.47	2.00	В	JOT08			
		CLAY.	<u> </u>	42.0		2.00	С	N=15 (1,2/2,3	3,5,5)		
.5 =			X	=							
.0 —	3.00	14 1 00 AV51 14 1 1		41.5 –	41.27	3.00	В	JOT09			
=		Medium dense grey silty sandy GRAVEL with high cobble content.	4 X 0	41.0		3.00	С	N=21 (2,4/4,			
5 –			a X , a X 0	40.5							
0 =			a X , a X ,0	40.5 -		4.00	В	JOT10			-
=			4 X 9 4 X 0	40.0		4.00	С	50 (3,5/50 180mm			
.5 —	4.50	Medium dense grey silty slightly gravelly SAND.	i i	20.5	39.77			Tooming	,	_	
.0 =				39.5 -		5.00	В	JOT11			
=				39.0		5.00	С	N=25 (2,4/6,9	9,5,5)		
.5 —	5.50	Firm grey slightly sandy slightly gravelly silty CLAY.	XX	38.5 -	38.77						
.0 =			× × ×	-		6.00	В	JOT12			
ے ا			× × ×	38.0 —		6.00	С	N=14 (1,2/3,	3,4,4)		
.5 –			×	37.5							
.0 🚽	7.10	December 211 All All All All All All All All All A	×	=	37.17	7.00	В	JOT13			
.5 —	7.50	Dense grey silty slightly gravelly SAND.	× · · · · ·	37.0	36.77	7.00	С	N=43 (2,5/7,11,11	,14)		
Ĭ		Firm grey slightly sandy slightly gravelly silty CLAY.	× × ×	36.5							
.0 =	7.90	Stiff grey slightly sandy slightly gravelly silty CLAY with low cobble content.	× × · ·	-	36.37	8.00 8.00	B C	JOT14 N=18 (2,3/4,4	155)		
.5 —		with low cobble content.	\$ \times	36.0 —		0.00	C	10 (2,3/4,	+,5,5)		
=			0 × ×	35.5							
.0 -	9.20		8 0 X	-	35.07	9.00 9.00	B C	JOT15 N=31 (3,5/9,9	9 6 7)		
.5 —	5.20	Dense grey brown silty sandy GRAVEL with high cobble content.	*4 × 6 4 × 0	35.0 —]		J	51 (5,5/5,	-,-,1)		
=			4 × 6 × 6	34.5							
.0 -	10.10	Obstruction - possible boulders.	, a x , ê a x 6	24.0	34.17	10.00 10.00	B C	JOT16 50 (25 fc	or		
.5 –	10.20	End of Borehole at 10.20m		34.0 —	34.07	10.20	Ċ	105mm/50 20mm)	for		
=				33.5				50 (25 fc	or		
		Chicolling: Water Children, Water Dat '	lmc+-"	otic = :	Ι	النائد	-		जागाग)	I ogor d	
d	1	Sealed Deptil. Deptil.	Install From: To	: Pipe	e: From:	Backfill: To: Typ	-	Remarks: orehole terminated	d due	Legend: B: Bulk D: Disturt	
1	b)	2.80 3.00 01:00 2.80 1.80 3.50 04/09 10.20 5.50 4.30 4.50 01:00 5.50 4.80 NS	0.00 1.5 1.50 10.	50 Soli 00 Slotte		.00 Bento 0.20 Grav		obstruction.		U: Undist ES: Envir W: Water	onmer
6		10.10 10.20 01:30								C: Cone S S: Split si	SPT

Contract 633		Cable Percussion	n Bo	orel	nole	Log			В	orehole BH1	
Contrac	t:	Cornamaddy Housing Development	Easting	g:	605834	4.396		Date Started:	06/09	/2024	
Location	1:	Athlone, Co. Westmeath	Northin	ng:	742928	3.180		Date Completed:	06/09	/2024	
Client:		Westmeath County Council	Elevati	on:	43.97			Drilled By:	D. CI	arke	
Enginee	er:	SDS Design Engineers	Boreho		200mn	า	;	Status:	FINA	L	
Depth	. ,	Stratum Description	Legend		(mOD)	<u> </u>		and Insitu Tes		Water Strike	Backfill
Scale	Depth	TOPSOIL.		Scale	Depth	Depth T	ype	Result		Otriko	
0.5	0.40	Firm grey brown slightly sandy slightly gravelly silty CLAY with low cobble content.	× × 0	43.5	43.57						
1.0				43.0			B C	DC18 N=9 (2,2/2,2			
1.5	1.40	Firm grey slightly sandy slightly gravelly clayey SILT.	× × × ×	42.5	42.57						
2.0			× × × × × × × × × × × × × × × ×	42.0			ВС	DC19 N=9 (1,2/2,3			
2.5			× × × × × × × × × × × × × × × ×	41.5							
3.0			*	41.0		3.00 3.00	B C	DC20 N=15 (3,3/3,	3,4,5)		
3.5			X X X X	40.5							
4.0	3.80	Medium dense brown silty sandy GRAVEL with low cobble content.	, a X , a X	40.0	40.17		B C	DC21 N=27 (5,6/7,	6,6,8)		
4.5	4.50	Dense grey brown silty sandy GRAVEL with high	* × * * * * * * * * * * * * * * * * * *	39.5	39.47				, , , , ,		
5.0		cobble content.	4 X	39.0		5.00 5.00	B C	DC22 N=36 (7,8/9,			
5.5			4 × 4 × 4	38.5							
6.0			4 × 4 × 9	38.0		6.00 6.00	B C	DC23 N=38			
6.5			4 × 4 × 9	37.5				(8,8/8,9,10),11)		
7.0			**************************************	37.0			B C	DC24 N=32 (7,7/6,			
7.5			**************************************	36.5							
8.0			**************************************	36.0		8.00 8.00	B C	DC25 N=40			
8.5			4 × 4 × 9	35.5				(7,8/9,10,11	1,10)		
9.0			**************************************	35.0		9.00 9.00	B C	DC26 N=37			
9.5	9.60 9.70	Obstruction - possible boulders.	*******	34.5	34.37 34.27	9.70	С	(8,8/9,10,9 50 (25 fc	or		
10.0	0.10	End of Borehole at 9.70m		34.0	1			5mm/50 for	5mm)		
10.5				33.5							
-		Chiselling: Water Strikes: Water Details:	Instal	lation:		Backfill:		Remarks:		Legend:	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Dept	From: T	o: Pipe 50 Soli 50 Slotte	e: From: 1	To: Type:	e to	orehole terminated obstruction.	d due	B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT

Contract No: 6338	Cable Percussio	n Bo	orel	nole	Lo	g		В	orehole BH1	
Contract:	Cornamaddy Housing Development	Easting	j:	606086	6.872		Date Started:	30/08	3/2024	
Location:	Athlone, Co. Westmeath	Northin	ıg:	742615	5.273		Date Completed:	30/08	3/2024	
Client:	Westmeath County Council	Elevation	on:	57.69			Drilled By:	J. O'	Toole	
Engineer:	SDS Design Engineers	Boreho Diamet		200mm	ı		Status:	FINA	L	
Depth (m) Scale Depth	Stratum Description	Legend	Level	(mOD)	Sa Depth	mples Type	and Insitu Tes		Water Strike	Backfi
-	MADE GROUND: concrete.		57.5 -		Берит	туре	Result			
0.30 0.50	MADE GROUND: grey silty sandy gravel. MADE GROUND: grey silty sandy gravel with high cobble content.		57.0	57.39 57.19						
1.0	SOBBLE CORREST.		56.5	- - - - - - -	1.00 1.00	B C	JOT01 50 (25 fo 105mm/50 20mm	or) for		
2.0 — 1.80	Stiff brown grey slightly sandy slightly gravelly silty CLAY with low cobble content.		56.0 — - - - - 55.5 —	55.89	2.00	B C	JOT02 N=21 (2,4/4,	<u>.</u>		
3.0 —			55.0 — - - 54.5 —	-	3.00 3.00	B C	JOT03 N=15 (2,3/3,			
3.80	Firm brown grey slightly sandy slightly gravelly silty CLAY.	× × × × × × × × × × × × × × × × × × ×	54.0 — - - - 53.5 —	53.89	4.00 4.00	B C	JOT04 N=14 (1,2/3,			
4.5 — 4.50	Stiff black slightly sandy slightly gravelly silty CLAY.	X X	53.0 — 	53.19	5.00 5.00	B C	JOT05 N=16 (2,2/3,			
5.5 — - - - 6.0 — - - - - - - - - - - - - - - - - - - -			52.0 — 51.5 —	51.19	6.00 6.00	B C	JOT06 50 (6,14/5 155mm	0 for		
7.0 — 6.80	Stiff black slightly sandy slightly gravelly silty CLAY with high cobble content. Obstruction - possible boulders. End of Borehole at 7.00m		51.0	50.89	7.00	С	50 (25 fo 5mm/50 for	or 5mm)		
7.5 — — — 8.0 —			50.0 — 	- 						
8.5 —			49.0							
9.0 —			48.5							
10.0			48.0							
10.5			47.5 — - - 47.0 —							
	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Date: Hole Depth: Depth: Depth: Depth:	Install	lation:		Backfill:	pe: B	Remarks:	d due	Legend: B: Bulk D: Disturb	ned
	0.60 0.80 01:15 6.80 7.00 01:30 30/08 7.00 Dry		,,,,,				obstruction.		U: Undisti ES: Envir W: Water C: Cone S S: Split sp	urbed onmenta SPT

Appendix 2 Trial Pit Logs and Photographs

	act No: 338		-	Trial Pit I	_og						Trial P	
Contr	act:	Cornamaddy Housi	ng Development	Eas	sting:	605990	0.760		Date:		05/09/2024	
Locat	ion:	Athlone, Co. Westm	neath	No	rthing:	742736	6.565		Excavato		8T Tracked Excavator	
Client	::	Westmeath County	Council	Ele	vation:	44.96			Logged I	Ву:	M. Kaliski	
Engin	eer:	SDS Design Engine	eers		nensions WxD) (m):	4.20 x	0.70 >	2.60	Status:		FINAL	
	(mbgl)		Stratum Descripti			Legend	Level	(mOD) Sam	ples /	Field Tests	Water
Scale:	Depth	TOPSOIL.	·				Scale:	Depth	: Depth	Тур	pe Result	Strike
1.5 — 2.0 — 2.0 —	1.70	Firm light brown slight cobble content. Sand subangular to subrous subrounded of limest subrounded stiff light clayey SILT with medical sand laminas. Sand is subangular to subrous subrous subangular to subrous subangular to subrous subangular to subrous	ght grey brown slight lium cobble and boul s fine to coarse. Grainded of limestone.	ravel is fine to coar Cobbles are suban Ely sandy slightly g Ider content and o vel is fine to coars Cobbles and bould	ravelly ccasional e, ers are		44.5 -	43.26	1.00	В		
2.5 —					c c		42.5 -	-				
- -	2.60	Obstruction - boulder	'S. Pit terminated at 2.60	0m			-	42.36	5			
3.0 —							42.0					
3.5 —							41.5 -	-				
_							41.0 —					
	13	Termination:	Pit Wall Stability:	Groundwater Ra	te: Rema	ırks:			Key			
		Obstruction - boulders.	Pit walls stable.	Dry	-					Sma Unc	disturbed all disturbed disturbed CB onmental	R

	act No: 338		7	Trial Pit	Log						Trial Pit TP0	
Contr	act:	Cornamaddy Housing De	velopment	Ea	sting:	60595	5.185		Date:	C	5/09/2024	
Locat	ion:	Athlone, Co. Westmeath		No	orthing:	742728	3.880		Excavato		T Tracked Excavator	
Client	:	Westmeath County Counc	cil	Ele	evation:	44.66			Logged B	y: N	1. Kaliski	
Engin	eer:	SDS Design Engineers			mensions (WxD) (m)	4.30 x	0.70 x	3.00	Status:	F	INAL	
Level	(mbgl)	Str	atum Descripti	1.	,,,	Legend	Level			les / F	ield Tests	Water
Scale:		TOPSOIL.	<u>'</u>			-	Scale:	Depth	n: Depth	Туре	Result	Strike
1.5 —	0.30	Firm light brown slightly sar fine to coarse. Gravel is find imestone.					44.5 -	44.36	1.00	В	MK03	
2.0 — 2.5 — 3.0 —	2.50	Firm light brown slightly sar cobble and low boulder cor s fine to coarse. Gravel is f of limestone. Cobbles and l of limestone (up to 300mm Grey slightly silty sandy fine GRAVEL with high cobble a to coarse. Cobbles and bou imestone (up to 400mm dia Obstruction - boulders.	ntent and occase fine to coarse, so boulders are su diameter). to to coarse, sul and medium boulders are suba	sional sand lamin subangular to sub ubangular to subro bangular to subro ulder content. Sa angular to subrou	as. Sand prounded ounded ounded ounded and is fine		42.5 -	42.46	2.40	ES	MK04	•
3.5 -		Obstruction - Mino	/all Stability: r collapse v 1.50mbgl.	Groundwater Ra 2.50 Seepage	ate: Rema	arks:	41.5 -			Small Undis=	listurbed disturbed sturbed CBR nmental	

	act No:		Trial Pit Lo	g						Trial Pit TP0	
Contr	act:	Cornamaddy Housing Development	Easting	g:	605949	0.948		Date:		05/09/2024	
Locat	tion:	Athlone, Co. Westmeath	Northir	ng:	742770	0.653		Excavator		8T Tracked Excavator	
Client	t:	Westmeath County Council	Elevati	on:	44.32			Logged B	y:	M. Kaliski	
Engin	neer:	SDS Design Engineers	Dimen (LxWx)		4.60 x	0.70 x	3.00	Status:		FINAL	
	l (mbgl)	Stratum Descri	1.		_egend	Level	•			Field Tests	Water
Scale:	Depth	TOPSOIL.	•			Scale:	Depth	n: Depth	Тур	e Result	Strike
0.5 — 1.0 — - 1.5 —	:	Firm light grey brown slightly sandy slig Sand is fine to coarse. Gravel is fine to subrounded of limestone.		Г.		44.0 — 44.0 — 43.5 — 43.5 — 43.0 —	44.02	0.50	ES B	MK06	
2.0 —	2.00	Firm grey brown slightly sandy slightly cobble and low boulder content. Sand is fine to coarse, subangular to subrounded diameter). Grey slightly silty sandy fine to coarse, sometimes of the same subangular to subrounded to coarse. Some subangular to coarse, some subangular to coarse. Some subangular to coarse. Cobbles and boulders are subangular to coarse. (up to 450mm diameter).	s fine to coarse. Gravel ed of limestone. Cobbles of limestone (up to 800 subangular to subround boulder content. Sand i	is and mm ed s fine		42.5 - - - - - 42.0 -	42.52	1.90	В	MK08	•
- - -	2.00			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		- - 41.5 —	44.20				
3.0 —	3.00	Obstruction - boulders. Pit terminated at 3	3.00m			41.0 —	41.32	2			
3.5 —	-					- - 40.5 —					
		Termination: Pit Wall Stability:	Groundwater Rate:	Remar	ks:			Key:			
	(1)	Obstruction - Pit walls stable. boulders.	2.00 Seepage	-					Sma Und=	disturbed Il disturbed isturbed CBF onmental	₹

	act No: 338		Trial Pi	it Log						Trial Pit	
Contr	act:	Cornamaddy Housing Developme	nt	Easting:	605913	3.450		Date:	(05/09/2024	
Locat	ion:	Athlone, Co. Westmeath		Northing:	742839	9.098		Excavator		BT Tracked Excavator	
Client	:	Westmeath County Council		Elevation:	43.87			Logged B	y: I	M. Kaliski	
Engin	eer:	SDS Design Engineers		Dimension (LxWxD) (r		0.70 x	3.40	Status:	F	FINAL	
Level	(mbgl)	Stratum De	escription	7.	Legend	Level ((mOD) Samp	les / F	ield Tests	Water
Scale:	Depth	TOPSOIL.				Scale:	Depth	: Depth	Тур	e Result	Strike
1.5 — 2.0 — 3.5 — 3.5 —	2.00	Firm light grey brown slightly sandy Sand is fine to coarse. Gravel is fine subrounded of limestone. Firm grey slightly sandy slightly graves and laminas. Sand is fine to coarse subangular to subrounded of limesters.	velly clayey SILT wit e. Gravel is fine to c one.	ular to		43.5 — 43.0 — 42.5 — 42.5 — 41.5 — 41.0 — 40.5 — 40.5 —	43.67	2.50	В	MK10	
_		Termination: Pit Wall Stabi	lity: Groundwate	r Rate: Rei	marks:	40.0 —		Key:			
		Obstruction - Pit walls stable boulders.		-				B = D = CBR :	Smal Undi =	disturbed I disturbed isturbed CBR nmental	\ \

	act No:		Trial P	it Log	l					Trial Pit	
Contr	act:	Cornamaddy Housing Developm	nent	Easting:	60583	7.423		Date:	(06/09/2024	
Locat	ion:	Athlone, Co. Westmeath		Northing:	74282	5.893		Excavato		8T Tracked Excavator	
Client	t:	Westmeath County Council		Elevation:	44.08			Logged B		M. Kaliski	
Engin	neer:	SDS Design Engineers		Dimension (LxWxD)		0.70 >	3.50	Status:	ı	FINAL	
Level	(mbgl)	Stratum I	Description		Legend	Level	(mOD) Samp	les / F	Field Tests	Water
Scale:	Depth	TOPSOIL.	Description		Logona	Scale:	Depth	n: Depth	Тур	e Result	Strike
1.5 — 2.0 — 2.5 — 3.5 — 3.5 —	0.60	Firm light grey brown slightly sand Sand is fine to coarse. Gravel is fi subrounded of limestone. Firm grey brown slightly sandy sliftequent sand laminas. Sand is fir coarse, subangular to subrounded.	ghtly gravelly clayeyne to coarse. Gravel	gular to		43.5 - 43.5 - 42.5 - 41	43.48	0.50 3 1.00	ES B	MK30 MK31	•
						40.5 -	-				
		Termination: Pit Wall Sta	ibility: Groundwat	ter Rate: Re	emarks:			Key:	<u></u>		
		Obstruction - Pit walls staboulders.	-					B = D = CBR	Bulk Smal = Undi	disturbed Il disturbed isturbed CBR onmental	1

Contra 63	act No: 338		1	rial Pi	t Log	J						Trial Pit I	
Contra	act:	Cornamaddy Housin	ng Development		Easting:		605877	7.537		Date:	О	06/09/2024	
Location	on:	Athlone, Co. Westmo	eath		Northing:		742812	2.037		Excavator		T Tracked Excavator	
Client:		Westmeath County	Council		Elevation:		44.07			Logged B	y: N	Л. Kaliski	
Engine	eer:	SDS Design Engine	ers		Dimensior (LxWxD) (4.10 x	0.70 x	3.00	Status:	F	FINAL	
Level (Stratum Description	on		L	egend	Level Scale:	(mOD)			ield Tests	Water Strike
Scale:	Depth -	TOPSOIL.						44.0 —	Depth	: Depth	Туре	Result	
0.5 —		Firm light grey brown Sand is fine to coarse subrounded of limesto	. Gravel is fine to coa			X X X X X		- - - 43.5 –	43.87				
1.0 —	1	Firm grey brown sligh ine to coarse. Gravel imestone.	tly sandy slightly gravis fine to coarse, sub	velly clayey S pangular to su	ILT. Sand i ubrounded	is of	****** ***** **** **** **** ****	 43.0 	43.27	1.00	В	MK32	
1.5 -	1.90	- irm grey brown sligh	tly sandy slightly grav	velly clayey S	ILT with	X		- 42.5 = - -	42.17	,			
2.0 —	1	requent sand laminas coarse, subangular to	s. Sand is fine to coa	rse. Gravel is			X	42.0 — - -					
2.5 —						* * * * * * * * * * * * * * * * * * * *		41.5 - - - -		2.50	В	MK33	
3.0 —	3.00		Pit terminated at 3.00	m		×	-X · X · X • X	41.0 — - -	41.07	,			
3.5 —								40.5 - - - -					
		Termination:	Dit Wall Stability	Groundwater	r Data: Da	mar	ke:			Key:			
			Pit Wall Stability: Pit walls stable.	Dry	-	aniaí	N3.			B = D = CBR =	Small Undi	disturbed disturbed sturbed CBR nmental	

	act No:			Trial Pit L	og						Т	rial Pit	
Contr	act:	Cornamaddy Housing	g Development	East	ng:	605858	3.334		Date:		05/09	/2024	
Locat	ion:	Athlone, Co. Westme	eath	Norti	ning:	74294	1.324		Excavato	or:	8T Tr	acked vator	
Client	t:	Westmeath County C	Council	Elev	ation:	44.14			Logged E	Зу:	M. Ka		
Engin	ieer:	SDS Design Enginee	ers		ensions /xD) (m):	3.80 x	0.70 x	3.00	Status:		FINA	L	
Level	(mbgl)		Stratum Descript	1.		Legend	Level	(mOD) Samı	oles /	Field	Tests	Water
Scale:	Depth	TOPSOIL.				3	Scale:	Depth	n: Depth	Тур	oe F	Result	Strike
	1.30	Firm light grey brown s Sand is fine to coarse. subrounded of limesto Grey slightly silty sand GRAVEL with high cob to coarse. Cobbles and limestone (up to 350m	Gravel is fine to cone. by fine to coarse, subble and medium bod boulders are subal	bangular to subroui	nded d is fine		44.0 — 43.5 — 43.0 — 42.5 —	43.94	0.50	ES B		MK17 MK18	
2.0 —							42.0 — - - - - 41.5 —		2.00	В	в г	MK19	
3.0 —	3.00 7	Obstruction - boulders	Pit terminated at 3.0	0m		<u>૽ૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺૺ</u>	41.0 — -	41.14	4				
3.5 —							40.5 - - -	-					
		Tormination	Dit Wall Stability	Groundwater Deta	y Pom-	rko:			Va				
			Pit Wall Stability: Pit walls stable.	Groundwater Rate	: Rema	IKS:				Bulk Sma	distur all distu disturb onmer	ırbed ed CBR	

	act No:		-	Trial Pit	Log						Trial Pit TP0	
Contr	act:	Cornamaddy Housing Deve	elopment	E	asting:	605853	3.542		Date:		06/09/2024	
Locat	ion:	Athlone, Co. Westmeath		N	lorthing:	742860	0.716		Excavato		8T Tracked Excavator	
Client	t:	Westmeath County Counci	I	E	levation:	43.94			Logged B	By:	M. Kaliski	
Engin	neer:	SDS Design Engineers			imensions _xWxD) (m)	4.30 x	0.70 x	3.00	Status:		FINAL	
Level	(mbgl)	Stra	tum Descripti	1.	/ / /	Legend	Level			les / l	Field Tests	Water
Scale:	Depth	TOPSOIL.					Scale:	Depth	n: Depth	Тур	e Result	Strike
1.5 —	0.20	Firm light grey brown slightly Sand is fine to coarse. Grave subrounded of limestone. Firm grey brown slightly san frequent sand laminas. Sand coarse, subangular to subro	dy slightly gra	arse, subangula avelly clayey SIL arse. Gravel is fi	ar to		43.5 - - - - 43.0 - - 42.5 - -	42.64	1.00	В		
2.0 —	3.00	Pit t	erminated at 3.00	O m			42.0 —	40.94	3.00	В	MK28	
3.5 —							40.5	-				
		Termination: Pit Wa	all Stability:	Groundwater F	Rate: Rema	arks:	l .	1	Key:	1		1
	§)	Obstruction - Pit wa boulders.	lls stable.	Dry	-					Sma = Und	disturbed II disturbed listurbed CBR onmental	2

	act No:			Trial Pit	Log						Trial Pit TP0	
Contr	act:	Cornamaddy Hou	sing Development	E	Easting:	605907	7.329		Date:		05/09/2024	
Locat	tion:	Athlone, Co. West	tmeath	ı	Northing:	742877	7.109		Excavato		8T Tracked Excavator	
Clien	t:	Westmeath Count	ty Council	E	Elevation:	44.08			Logged B	By:	M. Kaliski	
Engir	neer:	SDS Design Engir	neers		Dimensions LxWxD) (m):	4.40 x	0.70 >	3.20	Status:		FINAL	
Level	l (mbgl)		Stratum Descript		,,,,	Legend	Level	(mOD) Samp	les /	Field Tests	Water
Scale:	Depth	TORCOIL				_	Scale:	Depth	n: Depth	Тур	e Result	Strike
	0.10		vn slightly sandy slight se. Gravel is fine to co stone.				44.0 — 43.5 — 43.0 — 42.5 —	43.98	0.50	ES		
2.0 — - - - - - 2.5 —	1.90	occasional sand lar	ntly sandy slightly grav minas. Sand is fine to o to subrounded of lime	coarse. Gravel is	with s fine to		42.0 — - - - - - - 41.5 –	42.18	2.00	В		
3.0 —		cobble content. Sar	andy slightly gravelly sind is fine to coarse. Grounded of limestone. Costone. Pit terminated at 3.2	ravel is fine to co Cobbles are sub	oarse,		41.0 —	41.18	3.00	В	MK16	
3.5							40.5 -	-				
		To make - 41 - 42	Dia Mall Cast 199	Carolina di Cata	Dete: D:	ulco-	-		17 -			
		Termination: Obstruction - boulders.	Pit Wall Stability: Pit walls stable.	Groundwater I	Rate: Rema	IrKS:				Bulk Sma = Und	disturbed III disturbed listurbed CBF onmental	₹

	act No:		-	Trial Pit	Log							Trial Pit	
Contr	act:	Cornamaddy Hous	ing Development	E	asting:	605836	6.265		Date:		05	/09/2024	
Locat	ion:	Athlone, Co. Westr	neath	N	orthing:	742908	3.803		Excava	itor:		Tracked	
Client	t:	Westmeath County	/ Council	E	levation:	43.92			Logged	d By:	M.	Kaliski	
Engin	neer:	SDS Design Engin	eers		imensions .xWxD) (m):	3.90 x	0.70 x	1.80	Status:		FII	NAL	
Level	(mbgl)		Stratum Descripti	ion		Legend	Level			mples	/ Fie	ld Tests	Water
Scale:	Depth	TOPSOIL.	·				Scale:	Depth	n: Dep	th Ty	/pe	Result	Strike
1.5 — 2.0 — 3.0 — 3.0 —	1.50	Sand is fine to coars subrounded of limes subrounded of limes. Firm grey brown sar and boulder content subangular to subro	ndy slightly gravelly sil . Sand is fine to coars unded of limestone. C unded of limestone (u	lty CLAY with hig se. Gravel is fine Cobbles and boul up to 900mm dian	r to ph cobble to coarse, lders are		43.5 - 43.0 - 42.5 - 41.5 - 41.0 - 40.5 - 40	42.42	1.00	0	≣S B	MK20 MK21	
3.5 —							- - - 40.0 —	-					
		Termination:	Pit Wall Stability:	Groundwater R	Rate: Rema	rks.			Ke	۸.			
		Obstruction - boulders.	Pit walls stable.	Dry	-				B = D = CE	= Bu = Sm	nall d	sturbed listurbed urbed CBR nental	

	act No: 338		Trial Pit L	og						Trial Pit TP1	
Contr	act:	Cornamaddy Housing Development	East	ing:	606086	3.092		Date:		06/09/2024	
Locat	ion:	Athlone, Co. Westmeath	Norti	ning:	742605	5.677		Excavato		8T Tracked Excavator	
Client	:	Westmeath County Council	Eleva	ation:	57.93			Logged B	y:	M. Kaliski	
Engin	eer:	SDS Design Engineers		ensions /xD) (m):	3.90 x	0.70 x	3.00	Status:		FINAL	
Level	(mbgl)	Stratum Descr	T,		Legend	Level		1	les / l	Field Tests	Water
Scale:	Depth	TOPSOIL.			3	Scale:	Depth	: Depth	Тур	e Result	Strike
1.0 —	0.70	Grey brown silty very sandy fine to coasubrounded GRAVEL with high cobble Sand is fine to coarse. Cobbles and bo subrounded of limestone (up to 800mm) Firm grey brown slightly sandy slightly fine to coarse. Gravel is fine to coarse, limestone. Pit terminated at	and medium boulder of bulders are subangular in diameter). gravelly clayey SILT. S subangular to subrour	to Sand is		57.5 - 57.0 - 56.5 - 55.5 - 55.0 - - - - - - - - - - - - -	57.73	0.50	B B	MK35	
3.5 —						54.5 — - - - - 54.0 —	-				
		Termination: Pit Wall Stability:	Groundwater Rate	e: Rema	rks:			Key:			
		Obstruction - boulders. Pit walls stable.	Dry	-				B = D = CBR	Bulk Sma = Und	disturbed Il disturbed listurbed CBR onmental	l

Contract No: 6338		Trial Pit Log									Trial Pit No: TP12		
Contract:		Cornamaddy Housing Development Eas			asting:	605854.602 D			Date:	vate: 05/09/2024		ļ	
Location:		Athlone, Co. Westmeath Northing:			742884.667					8T Tracked Excavator			
Client:		Westmeath County Council Elevation:			43.95 Lo			Logged E	ogged By: M. Kalis				
Engineer:		SDS Design Engineers Dimensions (LxWxD) (m):				4.10 x 0.70 x 3.10 S			Status:	Status: FINAL			
Level (mbgl)							Level (mOD)				Field Tests	Water	
Scale:	Depth	TOPSOIL.				Legend	Scale:	Depth	n: Depth Type		e Result	Strike	
1.5 — 2.0 — 2.5 — 3.0 — 3.0 —	2.90	Firm light grey brown Sand is fine to coars subrounded of limest fine to coarse. Grave limestone. Stiff grey slightly san and medium boulder coarse, subangular to boulders are subang diameter).	e. Gravel is fine to cotone. httly sandy slightly gravelly sill is fine to coarse, such content. Sand is fine to subrounded of lime	avelly clayey SIL bangula ilty CLAY with high to coarse. Gravestone. Cobbles a	r to T. Sand is ounded of ounded of ounded of ounded of ounded of ounded of ounded on ounded		43.5 — 43.0 — 42.5 — 41.5 — 41.0 — 41.0 —	42.15	1.00 5 2.00	В	MK24		
3.5 —			Pit terminated at 3.1	0m			40.5 — - - - 40.0 —						
		Termination:	Pit Wall Stability:	Groundwater R	ate: Rema	ırks:			Key:				
		Obstruction - boulders.	tion - Pit walls stable. Dry - BDC						B = D = CBR	B = Bulk disturbed			

TP01 Sidewall

TP01 Spoil

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Sidewall

TP04 Spoil

TP05 Sidewall

TP05 Spoil

TP06 Sidewall

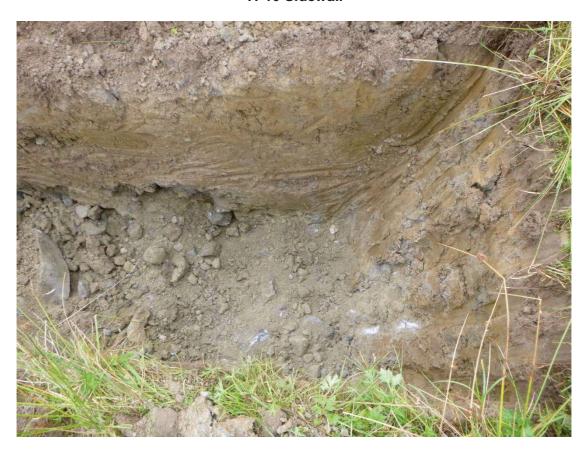
TP06 Spoil

TP07 Sidewall

TP07 Spoil

TP08 Sidewall

TP08 Spoil


TP09 Sidewall

TP09 Spoil

TP10 Sidewall

TP10 Spoil

TP11 Sidewall

TP11 Spoil

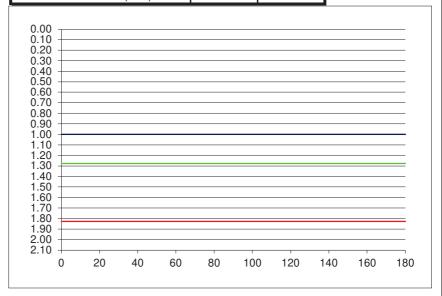
TP12 Sidewall

TP12 Spoil

Appendix 3 Soakaway Test Results and Photographs

Project Reference:	6338
Contract name:	Cornamaddy
Location:	Athlone, Co. Westmeath
Test No:	INF01

05/09/2024


Date:

Ground Condi	tions	
From	То	
0.00	0.20	TOPSOIL.
0.20	0.60	Firm light brown grey slightly sandy SILT.
0.60	1.90	Firm light grey slightly sandy slightly gravelly SILT with occasional sand
		laminas.
1.90	2.10	Firm grey slightly sandy SILT.

Remarks:

Elapsed Time	Fall of Water
(mins)	(m)
0	1.00
0.5	1.00
1	1.00
1.5	1.00
2	1.00
2.5	1.00
3 3.5	1.00
3.5	1.00 1.00
4	1.00
4.5	1.00
5	1.00
6 7	1.00
	1.00
8	1.00
9	1.00
10	1.00
12	1.00
14	1.00
16	1.00
18	1.00
20	1.00
25	1.00
30	1.00
40	1.00
50	1.00
60	1.00
75	1.00
90	1.00
120	1.00
150	1.00
180	1.00

Pit Dimensions (m)		
Length (m)	3.10	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.00	m
Depth of Water	1.10	m
75% Full	1.28	m
25% Full	1.83	m
75%-25%	0.55	m
Volume of water (75%-25%)	1.19	m3
Area of Drainage	15.96	m2
Area of Drainage (75%-25%)	6.35	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

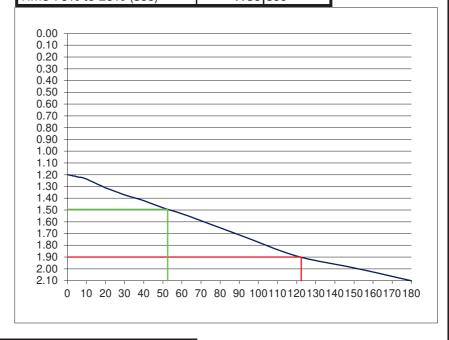
f = Fail or Fail m/min

Project Reference:	6338
Contract name:	Cornamaddy
Location:	Athlone, Co. Westmeath
Test No:	INF02

06/09/2024

Ground Conditions

dibulia Conditions		
From	То	
0.00	0.20	TOPSOIL.
0.20	1.50	Firm light grey brown slightly sandy clayey SILT.
1.50	2.10	Grey silty sandy GRAVEL with high cobble and medium boulder content.


Remarks:

Date:

-	
Elapsed Time	Fall of Water
(mins)	(m)
0	1.20
0.5	1.20
1	1.20
1.5	1.21
2	1.21
2.5	1.21
3	1.21
3.5	1.21
4	1.21
4.5	1.22
5	1.22
6	1.22
7	1.22
8	1.23
9	1.23
10	1.24
12	1.25
14	1.27
16	1.28
18	1.30
20	1.31
25	1.34
30	1.37
40	1.42
50	1.48
60	1.53
75	1.62
90	1.71
120	1.89
150	1.99

180

Pit Dimensions (m)		
Length (m)	4.10	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.29	m
Depth of Water	0.81	m
75% Full	1.49	m
25% Full	1.90	m
75%-25%	0.41	m
Volume of water (75%-25%)	1.16	m3
Area of Drainage	20.16	m2
Area of Drainage (75%-25%)	6.76	m2
Time		
75% Full	52.5	min
25% Full	122.25	min
Time 75% to 25%	69.75	min
Time 75% to 25% (sec)	4185	sec

f = 0.00247 or m/min

2.10

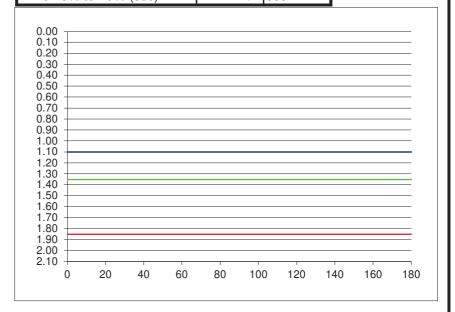
4.11E-05 m/s

Project Reference:	6338
Contract name:	Cornamaddy
Location:	Athlone, Co. Westmeath
Test No:	INF03

05/09/2024

Ground Conditions

Grouna Conai	tions	
From	То	
0.00	0.30	TOPSOIL.
0.30	1.30	Firm light brown grey slightly sandy SILT with occasional sand laminas.
1.30	2.10	Firm grey brown slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content.


Remarks:

Date:

-

-	
Elapsed Time	Fall of Water
(mins)	(m)
0	1.10
0.5	1.10
1	1.10
1.5	1.10
2	1.10
2.5	1.10
3	1.10
3.5	1.10
4	1.10
4.5	1.10
5	1.10
6	1.10
7	1.10
8	1.10
9	1.10
10	1.10
12	1.10
14	1.10
16	1.10
18	1.10
20	1.10
25	1.10
30	1.10 1.10
40	1.10
50	1.10
60	1.10
75	1.10
90	1.10
120	1.10
150	1.10
180	1.10

Pit Dimensions (m)		
Length (m)	4.10	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.10	m
Depth of Water	1.00	m
75% Full	1.35	m
25% Full	1.85	m
75%-25%	0.50	m
Volume of water (75%-25%)	1.44	m3
Area of Drainage	20.16	m2
Area of Drainage (75%-25%)	7.67	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

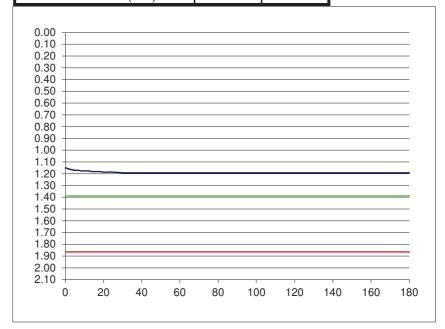
f = Fail or Fail m/min

Project Reference:	6338
Contract name:	Cornamaddy
Location:	Athlone, Co. Westmeath
Test No:	INF04

06/09/2024

Ground Conditions

Ground Conditions		
From	То	
0.00	0.30	TOPSOIL.
0.30	1.20	Grey silty sandy GRAVEL with high cobble and medium boulder content.
1.20	2.10	Firm grey brown slightly sandy slightly gravelly SILT.


Remarks:

-			

Date:

Elapsed Time	Fall of Water
(mins)	(m)
0	1.15
0.5	1.15
1	1.16
1.5	1.16
2	1.16
2.5	1.16
3	1.17
3.5	1.17
4	1.16 1.17 1.17 1.17
4.5	1.17
5	1.17
6	1.17
7	1.17
8	1.18
9	1.18
10	1.18
12	1.18
14	1.18
16	1.18
18	1.18
20	1.19
25	1.19
30	1.19
40	1.19
50	1.19
60	1.19 1.19
75	1.19
90	1.19
120	1.19
150	1.19
180	1.19

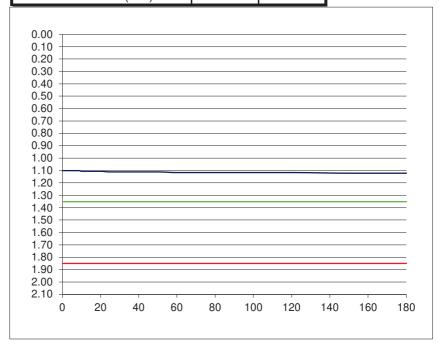
Pit Dimensions (m)		
Length (m)	3.60	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.15	m
Depth of Water	0.95	m
75% Full	1.39	m
25% Full	1.86	m
75%-25%	0.48	m
Volume of water (75%-25%)	1.20	m3
Area of Drainage	18.06	m2
Area of Drainage (75%-25%)	6.61	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/min

Project Reference:	6338
Contract name:	Cornamaddy
Location:	Athlone, Co. Westmeath

Test No: INF05
Date: 05/09/2024

	Ground Conditions		
ſ	From	То	
I	0.00	0.10	TOPSOIL.
I	0.10	2.10	Firm grey brown slightly sandy SILT.


Remarks:

Fall of Water
(m)
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11
1.11 1.11
1.11
1.12
1.12
1.12
1.12

150

180

Pit Dimensions (m)		
Length (m)	3.20	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.10	m
Depth of Water	1.00	m
75% Full	1.35	m
25% Full	1.85	m
75%-25%	0.50	m
Volume of water (75%-25%)	1.12	m3
Area of Drainage	16.38	m2
Area of Drainage (75%-25%)	6.14	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec



f = Fail or Fail m/min

1.12

1.12

INF01 Sidewall

INF01 Spoil

INF02 Sidewall

INF02 Spoil

INF03 Sidewall

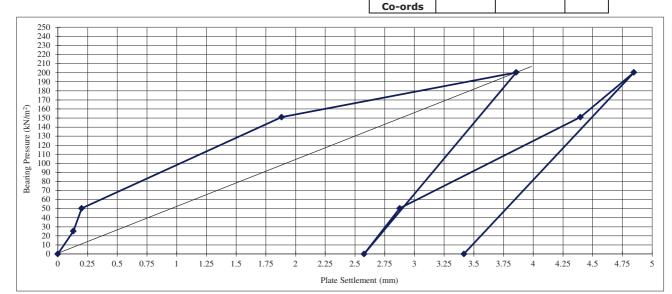
INF03 Spoil

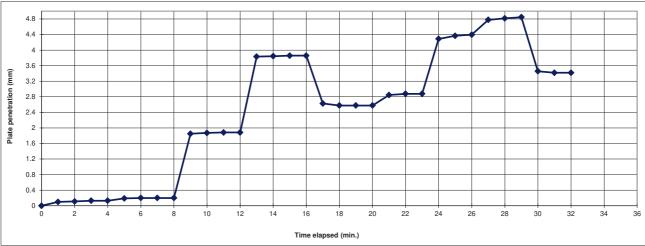
INF04 Sidewall

INF04 Spoil

INF05 Sidewall

INF05 Spoil

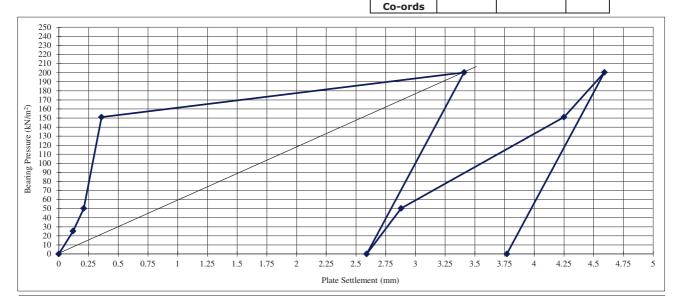

Appendix 4 Plate Load Test Results

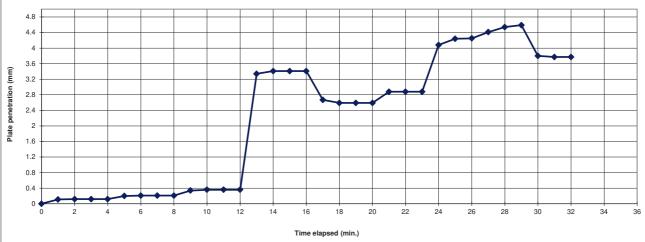

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

Client	Westmeath County Council			
Site	Cornamaddy	Cornamaddy Housing Development, Athlone, Co. Westmeath		
Test Date	29-Aug-24			
Location:	PLT01	PLT01		
Plate Diameter: 600mm			600mm	
Type of read	action Load 13tonne tracked excavator		ked excavator	
Materia	Material Type: Brown slightly sandy slightly gravelly si CLAY			
Depth test carried out:		0.50m BGL		
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	65
Equivalent CBR Value-Initial loading (%)	13.4
Mod. of subgrade Reaction k for 600mm Plate(kPa)	55
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.13
	50	0.20
	151	1.88
	200	3.86
	0.0	2.58
Reload	50	2.88
	151	4.40
	200	4.85
Final Condition	0.0	3.42
ITM	Easting	Northing
Co oudo	_	

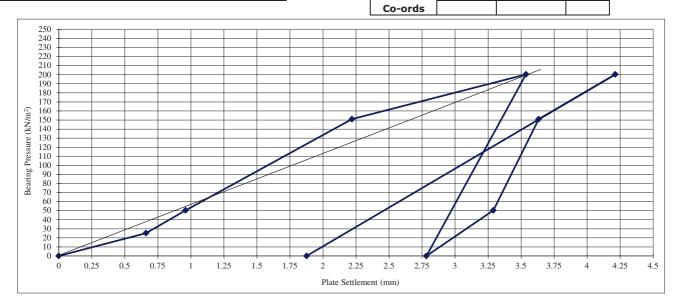

09/10/2024 ______Site Investigatins Ltd.

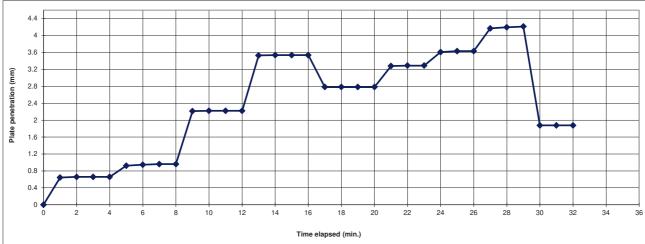

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

Client	Westmeath County Council			
Site	Cornamaddy	Cornamaddy Housing Development, Athlone, Co. Westmeath		
Test Date	29-Aug-24			
Location:	PLT01	PLT01		
	Plate Diameter: 600mm			
Type of reac	tion Load 13tonne tracked excavator			
Material Type: Brown slightly sandy slightly gravelly solution CLAY				
Depth test carried out:		0.50m BGL		
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	73
Equivalent CBR Value-Initial loading (%)	16.3
Mod. of subgrade Reaction k for 600mm Plate(kPa)	62
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.12
	50	0.21
	151	0.36
	200	3.41
	0.0	2.59
Reload	50	2.88
	151	4.25
	200	4.59
Final Condition	0.0	3.77
ITM	Easting	Northing
0		


09/10/2024 ______Site Investigatins Ltd.

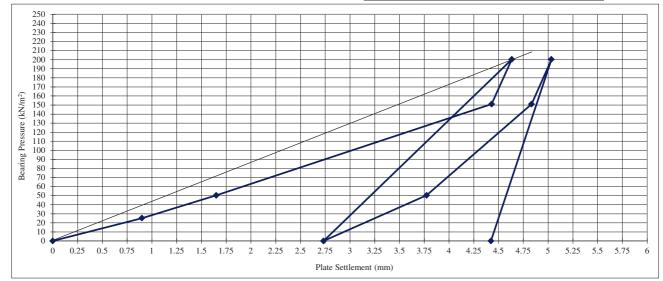

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

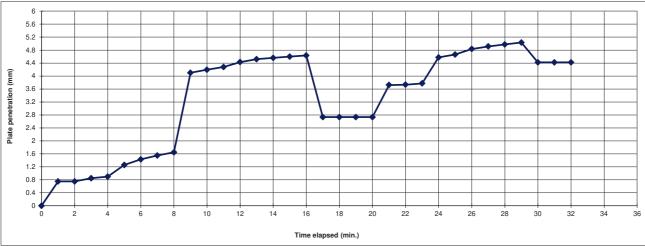
Client	Westmeath County Council			
		Cornamaddy Housing Development, Athlone, Co. Westmeath		
Site	Cornamaddy	Housing Development,	Athione, Co. Westmeath	
Test Date	29-Aug-24			
Location:	PLT03	PLT03		
Plate Diameter: 600mm			600mm	
Type of reac	tion Load 13tonne tracked excavator		ked excavator	
Material Type: Brown slightly sandy sli CLAY				
Depth test carried out:		0.50m BGL		
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	70
Equivalent CBR Value-Initial loading (%)	15.2
Mod. of subgrade Reaction k for 600mm Plate(kPa)	60
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.66
	50	0.96
	151	2.22
	200	3.54
	0.0	2.78
Reload	50	3.29
	151	3.63
	200	4.21
Final Condition	0.0	1.88
ITM	Easting	Northing
	, and the second	

09/10/2024 _____Site Investigatins Ltd.

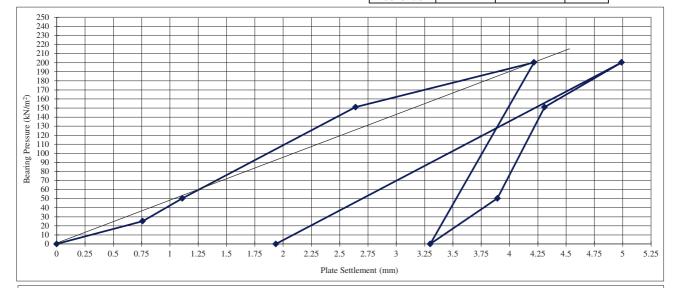

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

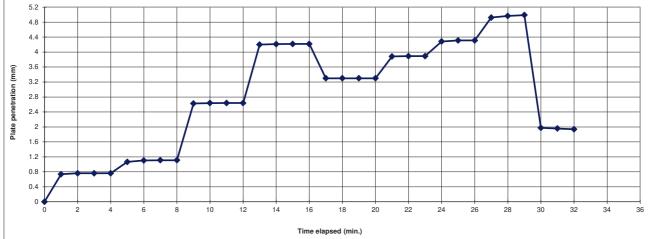

Client	Westmeath County Council			
Site	Cornamaddy	Cornamaddy Housing Development, Athlone, Co. Westmeath		
Test Date	29-Aug-24			
Location:	PLT04	PLT04		
Plate Diameter: 600mm			600mm	
Type of reac	ction Load 13tonne tracked excavator		ked excavator	
Material Type: Brown slightly sandy slightly gravelly s CLAY				
Depth test carried out:		0.50m BGL		
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	54
Equivalent CBR Value-Initial loading (%)	9.7
Mod. of subgrade Reaction k for 600mm Plate(kPa)	46
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
initia	25	0.90
	50	1.65
	151	4.43
	200	4.63
	0.0	2.73
Reload	50	3.77
	151	4.83
	200	5.03
Final Condition	0.0	4.42
ITM	Easting	Northing

evel Co-ords

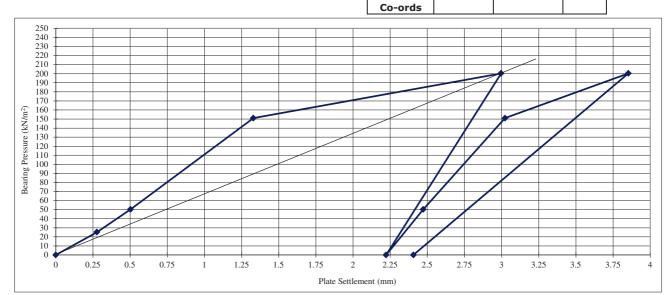

09/10/2024 _Site Investigatins Ltd.

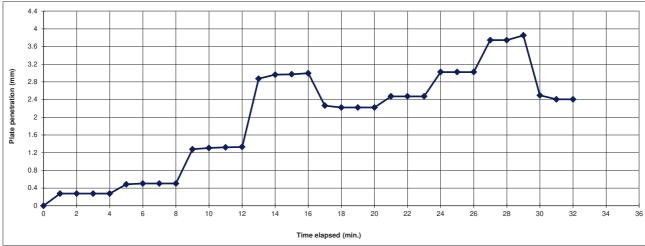

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

Client	Westmeath County Council			
Site	Cornamaddy	Cornamaddy Housing Development, Athlone, Co. Westmeath		
Test Date	29-Aug-24	29-Aug-24		
Location:	PLT05	PLT05		
	Plate Diameter: 600mm			
Type of reac	ction Load 13tonne tracked excavator		ked excavator	
Material Type: Brown slightly sandy slightly graveli CLAY				
Depth test carried out:		0.50m BGL		
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	59
Equivalent CBR Value-Initial loading (%)	11.3
Mod. of subgrade Reaction k for 600mm Plate(kPa)	50
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.76
	50	1.11
	151	2.64
	200	4.22
	0.0	3.30
Reload	50	3.89
	151	4.31
	200	4.99
Final Condition	0.0	1.94
ITM	Easting	Northing
Co-ords		


09/10/2024 ______Site Investigatins Ltd.

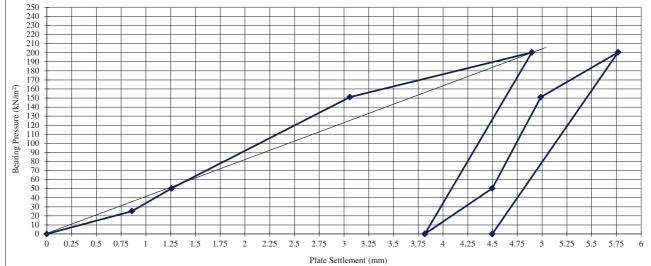

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

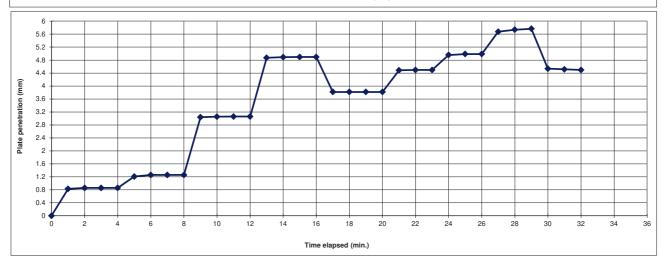
Client	Westmeath County Council			
Site	Cornamaddy	Cornamaddy Housing Development, Athlone, Co. Westmeath		
Test Date	30-Aug-24			
Location:	PLT06	PLT06		
	Plate Diameter: 600mm			
Type of reac	tion Load 13tonne tracked excavator		ked excavator	
Materia	Material Type: Brown slightly sandy slightly gravelly s CLAY		3 , 3 , ,	
Depth test carried		rried out:	0.50m BGL	
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	83
Equivalent CBR Value-Initial loading (%)	20.4
Mod. of subgrade Reaction k for 600mm Plate(kPa)	71
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.28
	50	0.50
	151	1.33
	200	3.00
	0.0	2.22
Reload	50	2.47
	151	3.02
	200	3.85
Final Condition	0.0	2.41
ITM	Easting	Northing
0		1

09/10/2024 ______Site Investigatins Ltd.

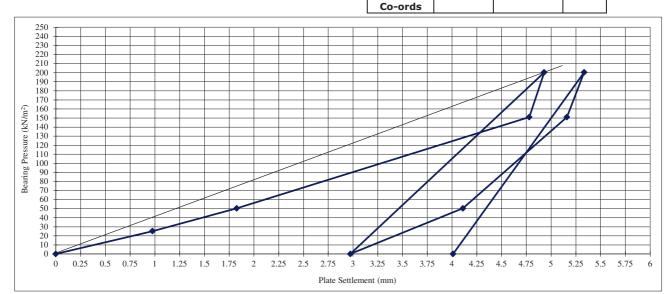

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

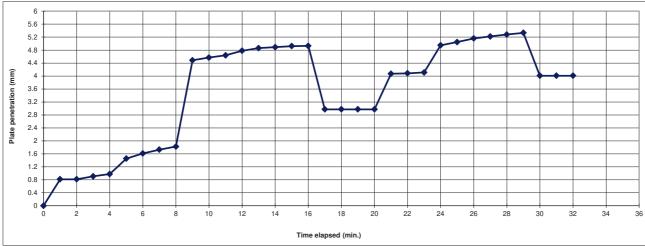

Client	Westmeath County Council			
Cilciic	Westineatif	Westificatif Country Council		
Site	Cornamaddy	Cornamaddy Housing Development, Athlone, Co. Westmeath		
Test Date	30-Aug-24			
Location:	PLT07	PLT07		
	Plate Diameter: 600mm			
Type of reac	tion Load 13tonne tracked excavator		ked excavator	
Materia	Material Type: Brown slightly sandy slightly CLAY			
Depth test carried out:		0.50m BGL		
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	51
Equivalent CBR Value-Initial loading (%)	8.8
Mod. of subgrade Reaction k for 600mm Plate(kPa)	43
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.86
	50	1.26
	151	3.06
	200	4.90
	0.0	3.82
Reload	50	4.50
	151	4.99
	200	5.77
Final Condition	0.0	4.50
ITM	Easting	Northing

ITM Easting Northing Level Co-ords


09/10/2024 _____Site Investigatins Ltd.

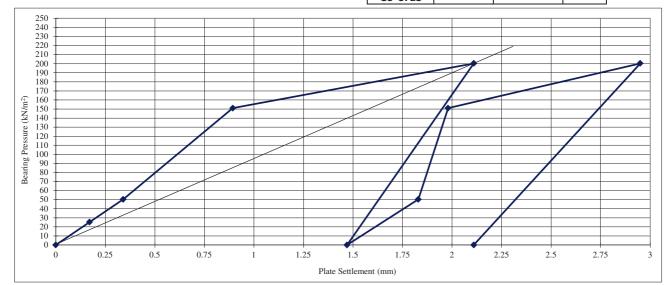

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

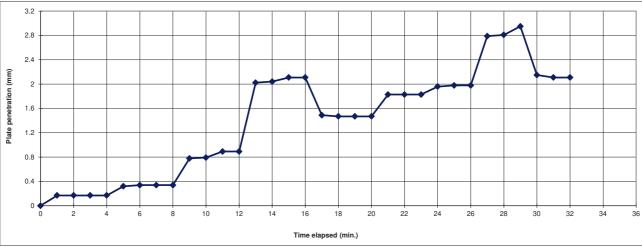
Client	Westmeath County Council			
Site	Cornamaddy	Cornamaddy Housing Development, Athlone, Co. Westmeath		
Test Date	30-Aug-24			
Location:	PLT08	PLT08		
	Plate Diameter: 600mm			
Type of reac	tion Load 13tonne tracked excavator		ked excavator	
Materia	Material Type: Brown slightly sandy slightly gravelly sin			
Depth test carried out: 0.50m BGL			0.50m BGL	
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	50
Equivalent CBR Value-Initial loading (%)	8.5
Mod. of subgrade Reaction k for 600mm Plate(kPa)	43
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.98
	50	1.83
	151	4.78
	200	4.93
	0.0	2.97
Reload	50	4.11
	151	5.16
	200	5.33
Final Condition	0.0	4.01
ITM	Easting	Northing
0		1

09/10/2024 _____Site Investigatins Ltd.

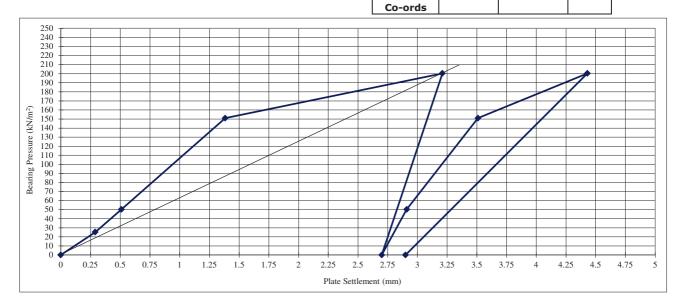

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie


Client	Westmeath County Council			
Site	Cornamaddy	Cornamaddy Housing Development, Athlone, Co. Westmeath		
Test Date	30-Aug-24	30-Aug-24		
Location:	PLT09	PLT09		
	Plate Diameter: 600mm			
Type of reac	tion Load 13tonne tracked excavator			
Materia	al Type: grey silty sandy GRAVEL stonefill		GRAVEL stonefill	
Depth test carried out: 0.50m BGL		0.50m BGL		
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	118
Equivalent CBR Value-Initial loading (%)	37.6
Mod. of subgrade Reaction k for 600mm Plate(kPa)	100
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.17
	50	0.34
	151	0.89
	200	2.11
	0.0	1.47
Reload	50	1.83
	151	1.98
	200	2.95
Final Condition	0.0	2.11
ITM	Easting	Northing
		l

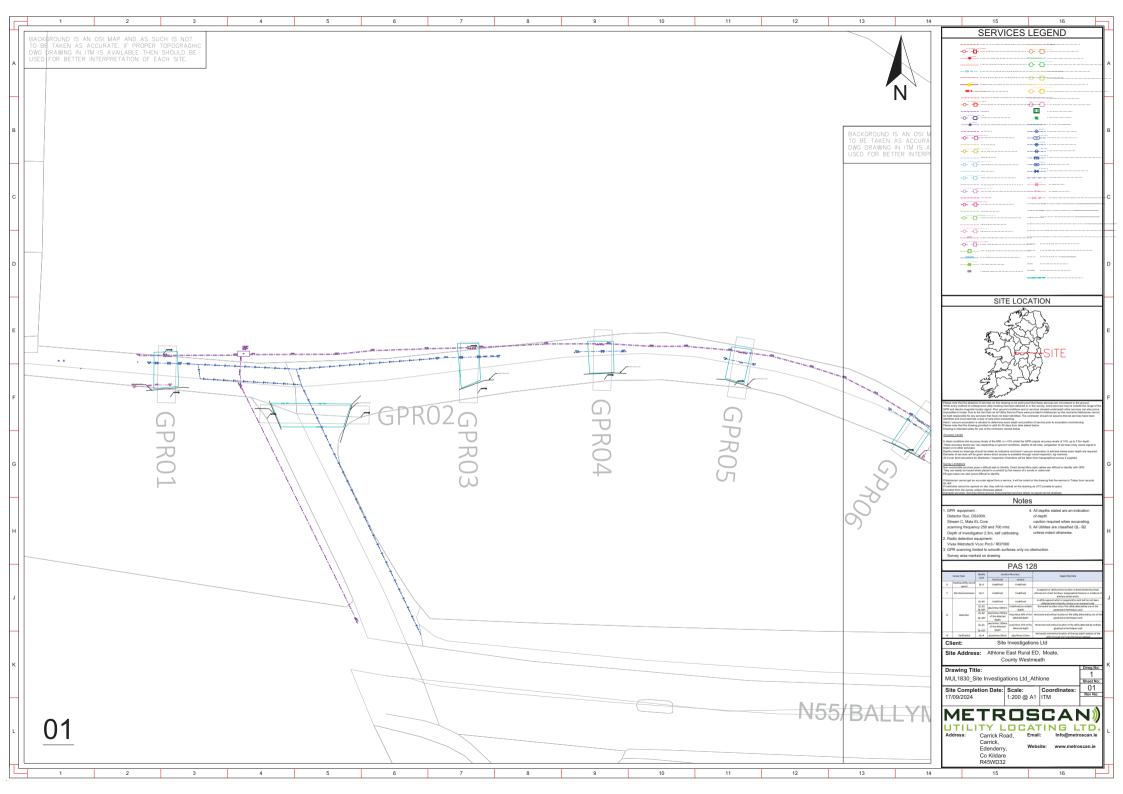
evel Co-ords

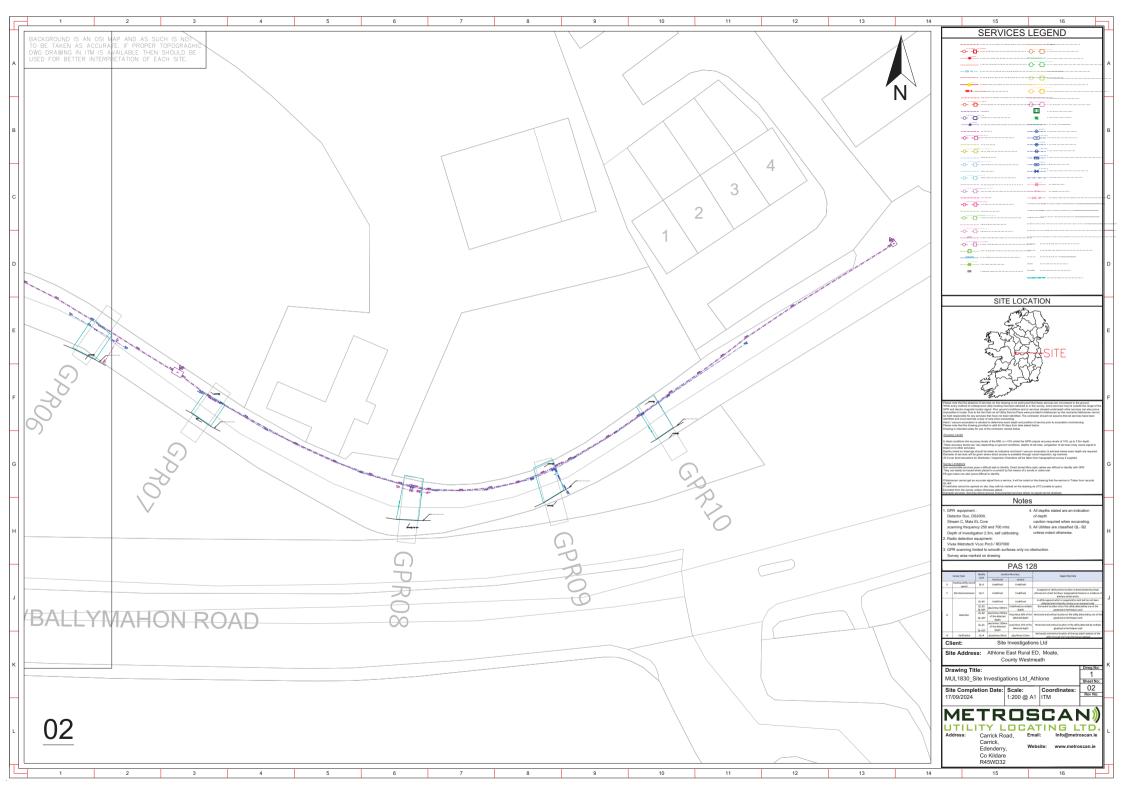

09/10/2024 _Site Investigatins Ltd.

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

Client	Westmeath County Council							
Site	-	Cornamaddy Housing Development, Athlone, Co. Westmeath						
Test Date	30-Aug-24							
Location:	PLT10	PLT10						
	Plate Diameter: 600mm							
Type of reac	tion Load	13tonne trac	ked excavator					
Materia	l Type:	v slightly gravelly silty LAY						
D	epth test ca	0.50m BGL						
СВі	CBR value is as per specification for 762mm Plate							

1.25mm settlement (graph) for 762mm Plate (kPa)	78
Equivalent CBR Value-Initial loading (%)	18.3
Mod. of subgrade Reaction k for 600mm Plate(kPa)	66
Correction factor for 600mm Plate	0.85

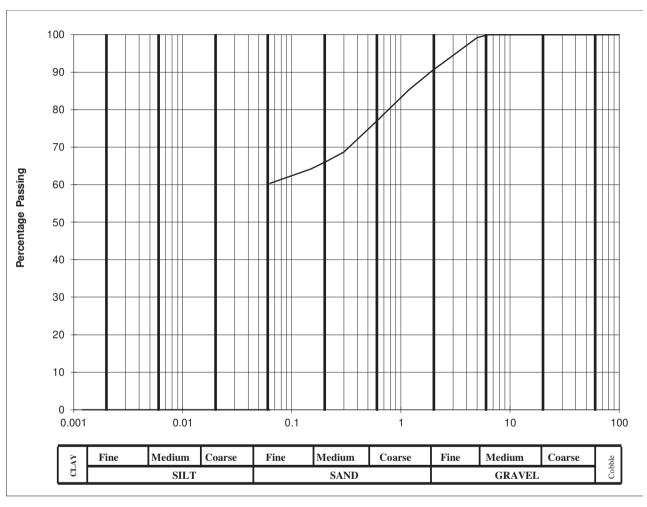

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.29
	50	0.51
	151	1.38
	200	3.21
	0.0	2.70
Reload	50	2.91
	151	3.51
	200	4.43
Final Condition	0.0	2.90
ITM	Easting	Northing
0		1



09/10/2024 ______Site Investigatins Ltd.

Appendix 5 Ground Probing Radar Survey Drawings

Appendix 6 Geotechnical Laboratory Test Results

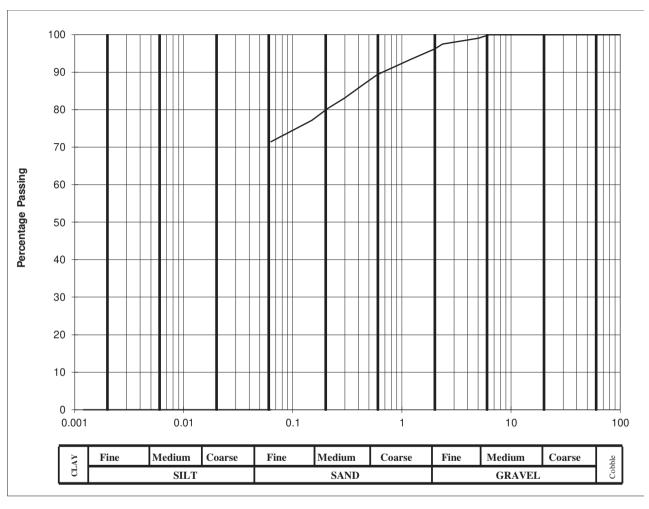

Classification Tests In accordance with BS 1377: Part 2

Client	Westmeath County Council
Site	Cornamaddy Housing Development, Athlone
S.I. File No	6338 / 24
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	4th October 2024

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Max.	Bulk	%	Comments	Remarks C=Clay; M=Silt
		No	No.	Type	Moisture	Limit	Limit	Index	Density	Density	passing		Plasticity: L=Low;
					Content	%	%	%	Mg/m^2	Mg/m^3	425um		I=Intermediate; H=High;
					%								V=Very High; E=Extremely
													High
BH02	1.00	DC27	24/1294	В	19.0	38	21	17			72.8		CI
BH05	1.00	DC36	24/1295	В	20.1	43	21	22			86.3		CI
BH06	1.00	JOT17	24/1296	В	20.4	44	20	24			84.0		CI
BH08	1.00	JOT29	24/1297	В	16.8	48	25	23			87.8		CI
BH09	1.00	DC09	24/1298	В	6.3	31	20	11	·		38.7		CL
BH12	2.00	JOT02	24/1299	В	17.7	52	26	26			88.4		СН

BS Sieve	Percent	Hydrometer analysis			
size, mm	passing	Diameter, mm	% passing		
100	100	0.0630			
90	100	0.0200			
75	100	0.0060			
63	100	0.0020			
50	100				
37.5	100				
28	100				
20	100				
14	100				
10	100				
6.3	100				
5.0	99.2				
2.36	92.2				
2.00	90.7				
1.18	85.3				
0.600	76.9				
0.425	72.8				
0.300	68.7				
0.212	66.3				
0.150	64.2				
0.063	60				

Cobbles, %	0
Gravel, %	9
Sand, %	31
Clay / Silt, %	60

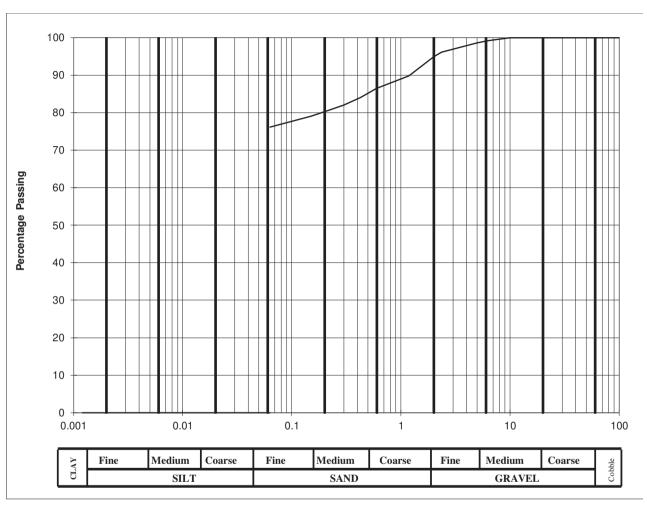


Client:	Westmeath County Council	Lab. No:	24/1294	Hole ID:	BH 02
Project:	Cornamaddy Housing Development, Athlone	Sample No:	DC27	Depth, m:	1.00

Material description:	slightly sandy slightly gravelly silty CLAY
Damarka	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5.0	99		
2.36	97.5		
2.00	96.2		
1.18	93.3		
0.600	89.4		
0.425	86.3		
0.300	83.1		
0.212	80.4		
0.150	77.2		
0.063	72		

Cobbles, %	0
Gravel, %	4
Sand, %	24
Clay / Silt, %	72

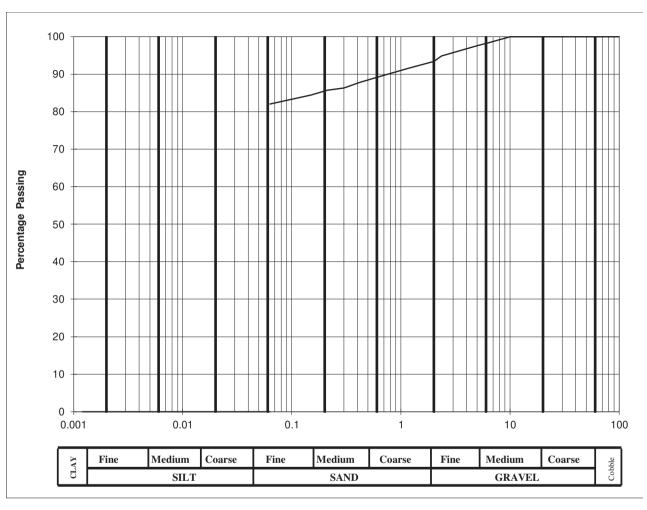


Client:	Westmeath County Council	Lab. No:	24/1295	Hole ID:	BH 05
Project:	Cornamaddy Housing Development, Athlone	Sample No:	DC36	Depth, m:	1.00

Material description:	slightly sandy slightly gravelly silty CLAY
Remarks:	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kemarks .	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer analysis		
size, mm	passing	Diameter, mm	% passing	
100	100	0.0630		
90	100	0.0200		
75	100	0.0060		
63	100	0.0020		
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	99.2			
5.0	98.6			
2.36	96.1			
2.00	94.9			
1.18	89.8			
0.600	86.5			
0.425	84			
0.300	82			
0.212	80.5			
0.150	79			
0.063	76			

Cobbles, %	0
Gravel, %	5
Sand, %	19
Clay / Silt, %	76

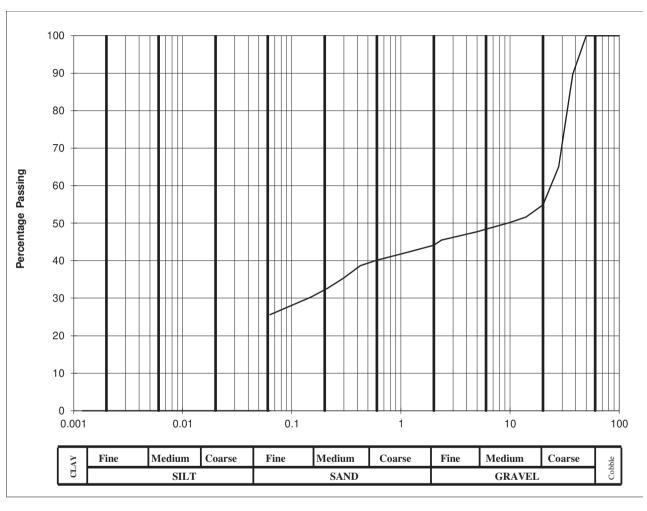


Client:	Westmeath County Council	Lab. No:	24/1296	Hole ID :	BH 06
Project:	Cornamaddy Housing Development, Athlone	Sample No:	JOT17	Depth, m:	1.00

Material description :	slightly sandy slightly gravelly silty CLAY
Remarks:	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kemarks .	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	98.3		
5.0	97.6		
2.36	94.8		
2.00	93.4		
1.18	91.6		
0.600	89.1		
0.425	87.8		
0.300	86.3		
0.212	85.7		
0.150	84.4		
0.063	82		

Cobbles, %	0
Gravel, %	7
Sand, %	11
Clay / Silt, %	82

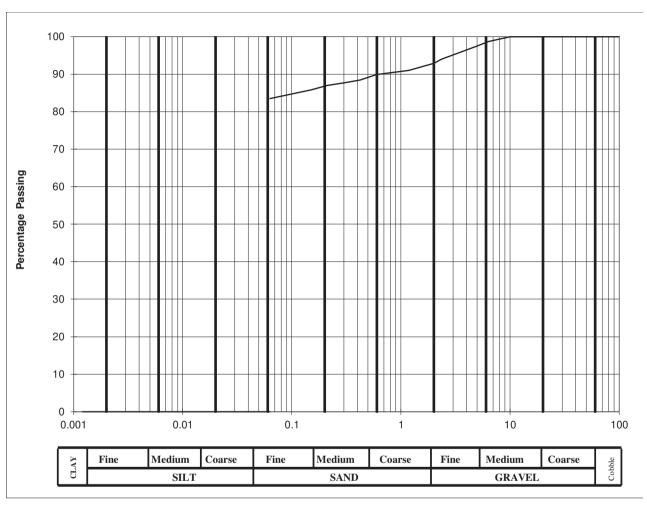


Client:	Westmeath County Council		Lab. No :	24/1297	Hole ID :	BH 08
Project :	Cornamaddy Housing Development, Athlone	[Sample No:	JOT29	Depth, m:	1.00

Material description:	slightly sandy slightly gravelly silty CLAY
Remarks:	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kemarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	89.7		
28	65		
20	54.9		
14	51.6		
10	50.2		
6.3	48.6		
5.0	47.7		
2.36	45.5		
2.00	44.1		
1.18	42.3		
0.600	40.1		
0.425	38.7		
0.300	35.4		
0.212	32.6		
0.150	30.3		
0.063	26		

Cobbles, %	0
Gravel, %	56
Sand, %	18
Clay / Silt, %	26



Client:	Westmeath County Council	Lab. No:	24/1298	Hole ID :	BH 09
Project:	Cornamaddy Housing Development, Athlone	Sample No:	DC09	Depth, m:	1.00

Material description:	slightly sandy gravelly silty CLAY
Damarke	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	98.7		
5.0	97.5		
2.36	94		
2.00	92.9		
1.18	91		
0.600	89.9		
0.425	88.4		
0.300	87.7		
0.212	87		
0.150	85.8		
0.063	84		

Cobbles, %	0
Gravel, %	7
Sand, %	9
Clay / Silt, %	84

Client:	Westmeath County Council	Lab. No:	24/1299	Hole ID:	BH 12
Project:	Cornamaddy Housing Development, Athlone	Sample No:	JOT02	Depth, m:	2.00

Material description :	slightly sandy slightly gravelly silty CLAY
Remarks ·	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

Chemical Testing In accordance with BS 1377: Part 3

Client	Westmeath County Council
Site	Cornamaddy Housing Development, Athlone
S.I. File No	6338 / 24
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	4th October 2024

Hole Id	Depth	Sample	Lab Ref	рН	Water Soluble	Water Soluble	Acid Soluble	Acid Soluble	Chloride	% passing
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Sulphate Content	Sulphate Content	ion	2mm
					(2:1 Water-soil	(2:1 Water-soil	(2:1 Water-soil	(2:1 Water-soil	Content	
					extract) (SO ₃)	(water:soil				
					g/L	%	g/L	%	ratio 2:1)	
									%	
BH02	1.00	DC27	24/1294	8.79	0.130	0.118				90.7
BH05	1.00	DC36	24/1295	9.01	0.126	0.121				96.2
BH06	1.00	JOT17	24/1296	8.94	0.131	0.125				94.9
BH08	1.00	JOT29	24/1297	8.85	0.133	0.124				93.4
BH09	1.00	DC09	24/1298	8.90	0.122	0.054				44.1
BH12	2.00	JOT02	24/1299	9.07	0.130	0.121				92.9

Appendix 7 Environmental Laboratory Test Results

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528777

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date of report Generation: 25 September 2024 **Customer:** Site Investigations Ltd

Sample Delivery Group (SDG): 240916-47 Your Reference: 6338

Location: Cornamaddy Athlone

Report No: 741825 Order Number: 35/B/24

We received 6 samples on Monday September 16, 2024 and 6 of these samples were scheduled for analysis which was completed on Wednesday September 25, 2024. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Lauren Ellis

VIII

General Manager Western Europe Environmental

Version: 3.7 Version Issued: 24/07/2024

Validated

Superseded Report:

Report Number: 741825 Location: Cornamaddy Athlone **SDG**: 240916-47 Client Ref.: 6338

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
30368625	TH 3		0.50 - 0.50	13/09/2024
30368626	TH 5		0.50 - 0.50	13/09/2024
30368627	TH 7		0.50 - 0.50	13/09/2024
30368628	TH 9		0.50 - 0.50	13/09/2024
30368629	TH 10		0.50 - 0.50	13/09/2024
30368630	TH 11		0.50 - 0.50	13/09/2024

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG: 240916-47 **Client Ref.:** 6338

Report Number: 741825 Location: Cornamaddy Athlone Superseded Report:

Results Legend																				
X Test	Lab Sample	No(s)			30368625			30368626			30368627			30368628			30368629			30368630
No Determination Possible Sample Types -	Customo Sample Refe				TH 3			TH 5			TH 7			8 TH 9			TH 10) TH 11
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	ence																		
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (r	n)			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contain	er	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)
	Sample Ty	ype	S			S	S	S			S	S			S	S		S	S	S
Anions by Kone (w)	All	NDPs: 0 Tests: 6	Х			X			X			X			X			X		
CEN Readings	All	NDPs: 0 Tests: 6	Х			X			X			X			X			X		
Chromium III	All	NDPs: 0 Tests: 6		Х			X			Х			Х			Х			Х	
Coronene	All	NDPs: 0 Tests: 6		Х			Х			Х			Х			Х			Х	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 6	Х			X			X			X			X			X		
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 6	Х			Х			Х			X			Х			Х		
EPH by GCxGC-FID	All	NDPs: 0 Tests: 6		Х			X			Х			Х			Х			Х	
EPH CWG GC (S)	All	NDPs: 0 Tests: 6		Х			X			Х			Х			X			Х	
Fluoride	All	NDPs: 0 Tests: 6	X			X			X			X			X			X		
GRO by GC-FID (S)	All	NDPs: 0 Tests: 6			Х			X			X			X			Х			X
Hexavalent Chromium (s)	All	NDPs: 0 Tests: 6		X			X			Х			X			X			X	
Loss on Ignition in soils	All	NDPs: 0 Tests: 6		X			X			X			X			X			X	
Mercury Dissolved	All	NDPs: 0 Tests: 6	Х			X			X			X			X			X		
Metals in solid samples by OES	All	NDPs: 0 Tests: 6		X			X			Х			X			Х			Х	
PAH 16 & 17 Calc	All	NDPs: 0 Tests: 6		Х			X			X			X			X			X	

SDG: 240916-47 **Client Ref.:** 6338

Report Number: 741825 Location: Cornamaddy Athlone Superseded Report:

Client Ker										.,	unoi									
Results Legend X Test N No Determination	Lab Sample	Lab Sample No(s)			30368625			30368626			30368627			30368628			30368629			30368630
Possible Sample Types -	Custome Sample Refe				TH 3			Z HT			TH 7			TH 9			TH 10			11 HT
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	ence																		
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (r	n)			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contain	er	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)
	Sample Ty	/pe	S	S	S	S	S	S	S	S	S		S	S	S	S	S	S	S	S
PAH by GCMS	All	NDPs: 0 Tests: 6		X			Х			X			X			X			Х	
PCBs by GCMS	All	NDPs: 0 Tests: 6		X			Х			X			X			X			Х	
pH	All	NDPs: 0 Tests: 6		X			X			X			X			X			X	
pH Value of Filtered Water	All	NDPs: 0 Tests: 6	Х			X			X			X			X			X		
Phenols by HPLC (W)	All	NDPs: 0 Tests: 6	Х			X			X			Х			Х			Х		
Sample description	All	NDPs: 0 Tests: 6		Х			Х			Х			Х			Х			Х	
Total Organic Carbon	All	NDPs: 0 Tests: 6		Х			Х			X			Х			Х			Х	
TPH CWG GC (S)	All	NDPs: 0 Tests: 6		X			Х			Х			Х			Х			Х	
VOC MS (S)	All	NDPs: 0 Tests: 6			X			X			X			Х			X			X

SDG: 240916-47 **Client Ref.:** 6338

Report Number: 741825 Location: Cornamaddy Athlone

Superseded Report:

Sample Descriptions

Grain Sizes

very fine	<0.0)63mm	fine	0.063	8mm - 0.1mm	med	lium	0.1mm	ı - 2mm	coar	se	2mm - 1	.0mm	very co	arse
Lab Sample	No(s)	Custom	er Sample	Ref.	Depth (m)		Col	our	Descrip	tion	Inc	clusions	Inclu	sions 2	1
3036862	25		TH 3		0.50 - 0.50		Light I	Brown	Sandy Clay	y Loam		Stones	Veg	etation	
3036862	26		TH 5		0.50 - 0.50		Dark I	Brown	Sandy Clay	y Loam		None	N	lone	
3036862	27		TH 7		0.50 - 0.50		Dark I	Brown	Sandy Clay	y Loam		Stones	Veg	etation	
3036862	28		TH 9		0.50 - 0.50		Dark I	Brown	Sandy Clay	y Loam		None	N	lone	
3036862	29		TH 10		0.50 - 0.50		Dark I	Brown	Sandy Clay	y Loam	Ve	egetation	N	lone	
3036863	30		TH 11		0.50 - 0.50		Dark I	Brown	Loamy S	Sand	;	Stones	Veg	etation	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Superseded Report:

CERTIFICATE OF ANALYSIS

SDG: 240916-47 **Client Ref.:** 6338

Report Number: 741825 Location: Cornamaddy Athlone

Results Legend # ISO17025 accredited.	(Customer Sample Ref.	TH 3		TH 5		TH 7		TH 9		TH 10		TH 11	
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor repo accreditation status.	rt for	Depth (m) Sample Type Date Sampled	0.50 - 0.50 Soil/Solid (S) 13/09/2024											
** "w recovery of the surrogate standard to che efficiency of the method. The results of indi compounds within samples aren't corrected recovery (F) Trigger breach confirmed	vidual	Sample Time Date Received SDG Ref Lab Sample No.(s)	16/09/2024 240916-47 30368625		16/09/2024 240916-47 30368626		16/09/2024 240916-47 30368627		16/09/2024 240916-47 30368628		16/09/2024 240916-47 30368629		16/09/2024 240916-47 30368630	
1-4+§@ Sample deviation (see appendix) Component	LOD/Un	AGS Reference												
Moisture Content Ratio (% of as received sample)	%	PM024	15		17		14		17		17		7.6	
Loss on ignition	<0.7 %	6 TM018	3.34	М	2.87	М	3.07	М	3.26	М	3.42	М	1.07	М
Organic Carbon, Total	<0.2 %	6 TM132	0.767	M	0.546	М	0.319	М	0.301	M	0.435	М	3.16	М
pH	1 pH Ur	nits TM133	8.52	М	8.73	М	8.75	M	8.65	M	8.39	М	8.81	М
Chromium, Hexavalent	<0.6 mg	/kg TM151	<0.6	М	<1.2	М								
PCB congener 28	<3 µg/l	kg TM168	<3	M	<3	М	<3	М	<3	M	<3	М	<3	М
PCB congener 52	<3 µg/l	kg TM168	<3	M	<3	М	<3	М	<3	M	<3	М	<3	М
PCB congener 101	<3 µg/l	kg TM168	<3	М										
PCB congener 118	<3 µg/l	kg TM168	<3	М										
PCB congener 138	<3 µg/l	kg TM168	<3	М										
PCB congener 153	<3 µg/l	kg TM168	<3	М										
PCB congener 180	<3 µg/l	kg TM168	<3	М										
Sum of detected PCB 7 Congeners	<21 µg/	kg TM168	<21		<21		<21		<21		<21		<21	
Chromium, Trivalent	<0.9 mg	/kg TM181	11.8		19.9		18.7		23.6		22.7		2.27	
Antimony	<0.6 mg	/kg TM181	<0.6	#	<0.6	#	<0.6	#	<0.6	#	1.01	#	<0.6	#
Arsenic	<0.6 mg	/kg TM181	7.47	M	10	M	11.9	M	11.5	M	13.9	M	2.74	M
Barium	<0.6 mg	/kg TM181	31.6	#	68.6	#	65	#	73.9	#	82.3	#	8.16	#
Cadmium	<0.02 m	g/kg TM181	0.899	М	0.631	М	1.13	М	0.913	М	0.937	М	0.367	М
Chromium	<0.9 mg	/kg TM181	11.8	М	19.9	М	18.7	М	23.6	М	22.7	М	2.27	М
Copper	<1.4 mg	/kg TM181	15.4	М	22.5	М	24.4	М	28.9	М	30.7	М	4.57	М
Lead	<0.7 mg	/kg TM181	13.3	М	19.8	М	19.2	М	21.1	М	27	М	2.95	М
Mercury	<0.1 mg	/kg TM181	<0.1	М										
Molybdenum	<0.1 mg	/kg TM181	0.741	#	0.868	#	0.901	#	1.29	#	1.57	#	0.351	#
Nickel	<0.2 mg	/kg TM181	35.2	М	45.4	М	57	М	73.8	М	62.2	М	8.88	М
Selenium	<1 mg/	kg TM181	1.49	#	<1	#	1.04	#	<1	#	<1	#	1.98	#
Zinc	<1.9 mg	/kg TM181	54.4	М	86.8	М	85.3	М	124	М	125	М	19.6	М
PAH Total 17 (inc Coronene) Moisture Corrected	<10 mg/	/kg TM410	<10		<10		<10		<10		<10		<10	\neg
Coronene	<200 µg	/kg TM410	<200		<200		<200		<200		<200		<200	\neg
Mineral Oil >C10-C40 (EH_2D_AL)	<5 mg/	kg TM415	<5		<5		<5		<5		<5		<5	\neg
														4

Validated

CERTIFICATE OF ANALYSIS

ALS

SDG: 240916-47

Report Number: 741825

Superseded Report:

	Client Ref.: 6338	Location:	Cornamaddy Athlone
PAH by GC	MS		

PAH by GCMS Results Legend	Cua	toway Comple Def	7110		TUE		711.7	THO		TIL 10	_	T11.44	
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.	Cus	tomer Sample Ref.	TH 3		TH 5		TH 7	TH 9		TH 10		TH 11	
diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor re	port for	Depth (m) Sample Type Date Sampled	0.50 - 0.50 Soil/Solid (S)		0.50 - 0.50 Soil/Solid (S)		0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)		0.50 - 0.50 Soil/Solid (S)		0.50 - 0.50 Soil/Solid (S)	
accreditation status. ** % recovery of the surrogate standard to	check the	Sample Time	13/09/2024		13/09/2024		13/09/2024	13/09/2024		13/09/2024		13/09/2024	
efficiency of the method. The results of it compounds within samples aren't correct	ndividual	Date Received SDG Ref	16/09/2024 240916-47		16/09/2024 240916-47		16/09/2024 240916-47	16/09/2024 240916-47		16/09/2024 240916-47		16/09/2024 240916-47	
recovery (F) Trigger breach confirmed			30368625		30368626		30368627	30368628		30368629		30368630	
1-4+§@ Sample deviation (see appendix)		ab Sample No.(s) AGS Reference											
Component Naphthalene	LOD/Únits	TM218	<9	\dashv	<9		<9	<9	-	<9	\dashv	<9	
				М		М	М		М		М		М
Acenaphthylene	<12 µg/kg			M	<12	М	<12 M	<12	М	<12	М	<12	М
Acenaphthene	<8 µg/kg	TM218	<8	М	<8	М	<8 M	<8	М	<8	М	<8	М
Fluorene	<10 µg/kg	TM218	<10	М	<10	М	<10 M	<10	М	<10	М	<10	М
Phenanthrene	<15 µg/kg	TM218	<15	М	<15	М	<15 M	<15	М	<15	М	<15	М
Anthracene	<16 µg/kg	TM218	<16	T	<16		<16	<16		<16		<16	
Fluoranthene	<17 µg/kg	TM218	<17	M	<17	М	<17	<17	M	<17	М	24.5	M
Pyrene	<15 µg/kg	TM218	<15	M	<15	М	<15	<15	M	<15	M	23	M
Benz(a)anthracene	<14 µg/kg		<14	M	<14	М	M <14	<14	M	<14	M	17.5	M
Chrysene	<10 µg/kg			M	<10	М	M <10		M	<10	M	14.1	M
•				М		М	М		M		M		М
Benzo(b)fluoranthene	<15 µg/kg			M	<15	М	<15 M		М	<15	M	23.7	М
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14	М	<14	М	<14 M	<14	М	<14	М	<14	М
Benzo(a)pyrene	<15 µg/kg	TM218	<15	М	<15	М	<15 M	<15	М	<15	М	18.4	М
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18	М	<18	М	<18 M	<18	М	<18	М	<18	М
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	<23	T	<23		<23	<23		<23		<23	
Benzo(g,h,i)perylene	<24 µg/kg	TM218	<24	M	<24	M	<24	<24	M	<24	М	<24	M
PAH, Total Detected USEPA 16	<118 µg/kg	g TM218	<118	M	<118	М	<118	<118	M	<118	М	121	M
											\rfloor		
				_							\dashv		
				_							+		
											\dagger		
				_							\perp		
				\dashv							\downarrow		
				_							4		
				_							\dashv		
				_							4		
				_							\downarrow		
				\rfloor							\perp		
											\Box		

ALS

SDG: 240916-47 **Client Ref.:** 6338

Report Number: 741825 Location: Cornamaddy Athlone

1825 Superseded Report:

TPH	CWG	(S)	
------------	------------	-----	--

TPH CWG (S) Results Legend		tomar Comris D. C	711.0	70.5	7117	7110	711.40	T11.44
# ISO17025 accredited. M mCERTS accredited.	Cus	stomer Sample Ref.	TH 3	TH 5	TH 7	TH 9	TH 10	TH 11
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50
tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor repo	ort for	Sample Type Date Sampled	Soil/Solid (S) 13/09/2024					
accreditation status. ** % recovery of the surrogate standard to chefficiency of the method. The results of ind		Sample Time						
compounds within samples aren't corrected		Date Received SDG Ref	16/09/2024 240916-47	16/09/2024 240916-47	16/09/2024 240916-47	16/09/2024 240916-47	16/09/2024 240916-47	16/09/2024 240916-47
recovery (F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	30368625	30368626	30368627	30368628	30368629	30368630
Component	LOD/Units							
GRO Surrogate % recovery**	%	TM089	96.1	93.4	92	91.9	95	93
Aliphatics >C5-C6 (HS_1D_AL)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aliphatics >C6-C8 (HS_1D_AL)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aliphatics >C8-C10 (HS_1D_AL)	<10 µg/kg		<10	<10	<10	<10	<10	<10
Aliphatics >C10-C12 (EH_2D_AL_#1)	<1000 µg/k		<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #
Aliphatics >C12-C16 (EH_2D_AL_#1)	<1000 µg/k	rg TM414	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #
Aliphatics >C16-C21 (EH_2D_AL_#1)	<1000 µg/k	rg TM414	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #
Aliphatics >C21-C35 (EH_2D_AL_#1)	<1000 µg/k	rg TM414	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	1650 #
Aliphatics >C35-C44 (EH_2D_AL_#1)	<1000 µg/k	rg TM414	<1000	<1000	<1000	<1000	<1000	<1000
Total Aliphatics >C10-C44 (EH_2D_AR_#1)	<5000 µg/k	kg TM414	<5000	<5000	<5000	<5000	<5000	<5000
Total Aliphatics & Aromatics >C10-C44 (EH_2D_Total_#1)	<10000 µg/kg	TM414	<10000	<10000	<10000	<10000	<10000	<10000
Aromatics >EC5-EC7 (HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aromatics >EC7-EC8 (HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aromatics >EC8-EC10 (HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aromatics > EC10-EC12 (EH_2D_AR_#1)	<1000 µg/k	(g TM414	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #
Aromatics > EC12-EC16 (EH_2D_AR_#1)	<1000 µg/k		<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #
Aromatics > EC16-EC21 (EH_2D_AR_#1)	<1000 µg/k		<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #
Aromatics > EC21-EC35 (EH_2D_AR_#1)	<1000 µg/k		<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #
Aromatics >EC35-EC44 (EH_2D_AR_#1)	<1000 µg/k		<1000	<1000	<1000	<1000	<1000	<1000
Aromatics > EC40-EC44 (EH_2D_AR_#1)	<1000 µg/k	rg TM414	<1000	<1000	<1000	<1000	<1000	<1000
Total Aromatics > EC10-EC44 (EH_2D_AR_#1)	<5000 µg/k	rg TM414	<5000	<5000	<5000	<5000	<5000	<5000
Total Aliphatics & Aromatics >C5-C44 (EH_2D_Total_#1+HS_1D_Total)	<10000 µg/kg	TM414	<10000	<10000	<10000	<10000	<10000	<10000
GRO >C5-C6 (HS_1D)	<20 µg/kg		<20	<20	<20	<20	<20	<20
GRO >C6-C7 (HS_1D)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	<20
GRO >C7-C8 (HS_1D)	<20 µg/kg		<20	<20	<20	<20	<20	<20
GRO >C8-C10 (HS_1D)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	<20
GRO >C10-C12 (HS_1D)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	<20
Total Aliphatics >C5-C10 (HS_1D_AL_TOTAL)	<50 µg/kg	TM089	<50	<50	<50	<50	<50	<50
Total Aromatics >EC5-EC10 (HS_1D_AR_TOTAL)	<50 µg/kg	TM089	<50	<50	<50	<50	<50	<50
GRO >C5-C10 (HS_1D_TOTAL)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	<20

SDG: 240916-47 **Client Ref.:** 6338

Superseded Report:

Report Number: 741825 Location: Cornamaddy Athlone

	er.: 6338			Location. (<u> Lornamaddy Atn</u>	ione		
VOC MS (S) Results Legend	Cu	stomer Sample Ref.	TH 3	TH 5	TH 7	TH 9	TH 10	TH 11
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample. Subcontracted - refer to subcontractor re		Depth (m) Sample Type Date Sampled	0.50 - 0.50 Soil/Solid (S) 13/09/2024					
accreditation status. ** % recovery of the surrogate standard to efficiency of the method. The results of it compounds within samples aren't correc recovery (F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)	ted for the	Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	16/09/2024 240916-47	16/09/2024 240916-47 30368626	16/09/2024 240916-47 30368627	16/09/2024 240916-47 30368628	16/09/2024 240916-47 30368629	16/09/2024 240916-47 30368630
Component Dibromofluoromethane**	LOD/Units	Method TM116	107	106	106	109	108	108
Toluene-d8**	%	TM116	93.5	94.6	95.8	96.3	100	97.8
4-Bromofluorobenzene**	%	TM116	99.7	94.3	105	102	95.4	101
Methyl Tertiary Butyl Ether	<0.5 µg/k	g TM116	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzene	<1 µg/kg	TM116	<1 M					
Toluene	<1 µg/kg	TM116	<1 M					
Ethylbenzene	<1 µg/kg	TM116	<1 M					
p/m-Xylene	<2 µg/kg	TM116	<2 #	<2 #	<2 #	<2 #	<2 #	<2 #
o-Xylene	<2 µg/kg	TM116	<2 M	<2 M	<2 M	<2 M	<2 M	<2 M

Hazardous

Waste Landfill

CERTIFICATE OF ANALYSIS

Particle Size <4mm

SDG: 240916-47 Client Ref.: 6338 Report Number: 741825

Location: Cornamaddy Athlone

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS Client Reference Site Location Cornamaddy Athlone

Mass Sample taken (kg) 0.105 Mass of dry sample (kg) 0.090

>95%

Site Location Cornamaddy Athlone
Natural Moisture Content (%) 16.2

Dry Matter Content (%) 86.1

Inert Waste

Landfill

Superseded Report:

 Case

 SDG
 240916-47

 Lab Sample Number(s)
 30368625

 Sampled Date
 13-Sep-2024

 Customer Sample Ref.
 TH 3

 Depth (m)
 0.50 - 0.50

Landfill Waste Acceptance Criteria Limits

Stable
Non-reactive

Hazardous Waste

in Non-

Solid Waste Analysis	Result
Total Organic Carbon (%)	0.767
Loss on Ignition (%)	3.34
Sum of BTEX (mg/kg)	_
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	8.52
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

	Hazardous Landfill	
3	5	6
-	-	10
-	-	-
1	-	-
500	-	-
100	-	-
-	>6	-
-	-	-
-	-	-

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A 2 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection	_			
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25	
Barium	0.00343	<0.0002	0.0343	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.00103	<0.0003	0.0103	< 0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	0.00978	< 0.003	0.0978	<0.03	0.5	10	30	
Nickel	0.000568	<0.0004	0.00568	<0.004	0.4	10	40	
Lead	0.000394	<0.0002	0.00394	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	0.00322	<0.001	0.0322	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	52.9	<10	529	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000	

Leach Test Information

Date Prepared	18-Sep-2024
pH (pH Units)	8.49
Conductivity (µS/cm)	69
Volume Leachant (Litres)	0.885

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

Landfill Waste Acceptance

>6

500

100

CERTIFICATE OF ANALYSIS

Case

Mineral Oil (mg/kg) (EH_2D_AL)

PAH Sum of 17 (mg/kg)

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

pH (pH Units)

SDG: 240916-47 Client Ref.: 6338

Report Number: 741825

Superseded Report: Location: Cornamaddy Athlone

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS **REF: BS EN 12457/2** Cornamaddy Athlone **Client Reference Site Location** Mass Sample taken (kg) 0.103 **Natural Moisture Content (%)** 14.7 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 87.2 Particle Size <4mm >95%

DG	240916-47
_ab Sample Number(s)	30368626
Sampled Date	13-Sep-2024
Customer Sample Ref.	TH 5
Depth (m)	0.50 - 0.50
Solid Waste Analysis	Result
Total Organic Carbon (%)	0.546
oss on Ignition (%)	2.87
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021

Eluate Analysis	C ₂ Conc ⁿ in 10	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection	_			
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25	
Barium	0.00402	<0.0002	0.0402	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.00182	<0.0003	0.0182	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	< 0.003	<0.003	<0.03	<0.03	0.5	10	30	
Nickel	0.000787	<0.0004	0.00787	<0.004	0.4	10	40	
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	0.0015	<0.001	0.015	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	69.4	<10	694	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	3.32	<3	33.2	<30	500	800	1000	
-								

Leach Test Information

Date Prepared	17-Sep-2024
pH (pH Units)	8.53
Conductivity (µS/cm)	91
Volume Leachant (Litres)	0.887

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

<5

<10

8.73

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

Hazardous

Waste Landfill

CERTIFICATE OF ANALYSIS

SDG: 240916-47 Client Ref.: 6338

Report Number: 741825

Location: Cornamaddy Athlone

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	SULTS		REF : BS EN 12457/2		
Client Reference		Site Location	Cornamaddy Athlone		
Mass Sample taken (kg)	0.105	Natural Moisture Content (%)	15.7		
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	86.5		
Particle Size <4mm	>95%				
Case			Landfill Waste Acceptance		
SDG	240916-47		Criteria Limits		

Lab Sample Number(s) 30368627 **Sampled Date** 13-Sep-2024 **Customer Sample Ref.** TH 7 0.50 - 0.50Depth (m)

Criteria Limits						
	Stable Non-reactive					

Hazardous Waste

in Non-

Hazardous

Superseded Report:

Inert Waste

Landfill

,	
Solid Waste Analysis	Result
Total Organic Carbon (%)	0.319
Loss on Ignition (%)	3.07
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	8.75
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection				
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25	
Barium	0.00369	<0.0002	0.0369	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.0013	<0.0003	0.013	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	0.00309	< 0.003	0.0309	<0.03	0.5	10	30	
Nickel	0.000589	<0.0004	0.00589	<0.004	0.4	10	40	
Lead	0.000233	<0.0002	0.00233	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	66	<10	660	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	4.47	<3	44.7	<30	500	800	1000	
Dissolved Organic Carbon	4.47	<3	44.7	<30	500	800		

Leach Test Information

Date Prepared	17-Sep-2024
pH (pH Units)	8.48
Conductivity (µS/cm)	86
Volume Leachant (Litres)	0.885

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

Landfill Waste Acceptance

Superseded Report:

CERTIFICATE OF ANALYSIS

Case

SDG: 240916-47 **Client Ref.:** 6338

Report Number: 741825

Location: Cornamaddy Athlone

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	REF : BS EN 12457/2		
Client Reference		Site Location	Cornamaddy Athlone
Mass Sample taken (kg)	0.102	Natural Moisture Content (%)	14.2
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	87.6
Particle Size <4mm	>95%		

SDG	240916-47	(Criteria Limit	S
Lab Sample Number(s)	30368628			
Sampled Date	13-Sep-2024		Stable Non-reactive	
Customer Sample Ref.	TH 9	Inert Waste Landfill	Hazardous Waste	Hazardous Waste Landfill
Depth (m)	0.50 - 0.50		in Non- Hazardous Landfill	114000 _4.1.4.111
Solid Waste Analysis	Result		Landilli	
Total Organic Carbon (%)	0.301	3	5	6
Loss on Ignition (%)	3.26	-	-	10

T. I.O O. I (9/)	0.301
Total Organic Carbon (%)	0.301
Loss on Ignition (%)	3.26
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	8.65
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	A 2 10:1 conc ⁿ	leached (mg/kg)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection	_		
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00364	<0.0002	0.0364	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.0017	<0.0003	0.017	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.00875	< 0.003	0.0875	<0.03	0.5	10	30
Nickel	0.000903	<0.0004	0.00903	<0.004	0.4	10	40
Lead	0.000428	<0.0002	0.00428	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	0.00204	<0.001	0.0204	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	68	<10	680	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	3.46	<3	34.6	<30	500	800	1000
-							

Leach Test Information

Date Prepared	17-Sep-2024
pH (pH Units)	8.61
Conductivity (µS/cm)	89
Volume Leachant (Litres)	0.888

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

Landfill Waste Acceptance Criteria Limits

>6

100

CERTIFICATE OF ANALYSIS

Case

SDG

PAH Sum of 17 (mg/kg)

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

pH (pH Units)

SDG: 240916-47 Client Ref.: 6338

240916-47

<10

8.39

Report Number: 741825

Superseded Report: Location: Cornamaddy Athlone

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS **REF: BS EN 12457/2** Cornamaddy Athlone **Client Reference Site Location** Mass Sample taken (kg) 0.107 **Natural Moisture Content (%)** 19.1 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 84 Particle Size <4mm >95%

Lab Sample Number(s)	30368629
Sampled Date	13-Sep-2024
Customer Sample Ref.	TH 10
Depth (m) Solid Waste Analysis	0.50 - 0.50
	Result
Total Organic Carbon (%)	0.435
Loss on Ignition (%)	3.42
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5

Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	A2 10:1 conc	leached (mg/kg)	Limit values for compliance leaching te using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00862	<0.0002	0.0862	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.000742	<0.0003	0.00742	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	< 0.003	<0.003	<0.03	<0.03	0.5	10	30
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	64.3	<10	643	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	3.18	<3	31.8	<30	500	800	1000

Leach Test Information

Date Prepared	17-Sep-2024
pH (pH Units)	8.64
Conductivity (µS/cm)	84
Volume Leachant (Litres)	0.883

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

SDG: 240916-47 Client Ref.: 6338

Report Number: 741825

Superseded Report: Location: Cornamaddy Athlone

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS **REF: BS EN 12457/2** Cornamaddy Athlone **Client Reference Site Location** Mass Sample taken (kg) 0.098 **Natural Moisture Content (%)** 8.97 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 91.8 Particle Size <4mm >95%

Case	0.400.40.47	Land	Landfill Waste Acceptand Criteria Limits			
SDG	240916-47		Criteria Limit	S		
Lab Sample Number(s)	30368630					
Sampled Date	13-Sep-2024		Stable Non-reactive	Hazardous Waste Landfill		
Customer Sample Ref.	TH 11	Inert Waste Landfill	Hazardous Waste			
Depth (m)	0.50 - 0.50		in Non- Hazardous Landfill			
Solid Waste Analysis	Result		Landini			

Solid Waste Analysis	Result
Total Organic Carbon (%)	3.16
Loss on Ignition (%)	1.07
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	8.81
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l) A ₂ 10:1			Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	0.00296	<0.0005	0.0296	<0.005	0.5	2	25
Barium	0.00274	<0.0002	0.0274	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.00227	<0.0003	0.0227	< 0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.00636	< 0.003	0.0636	<0.03	0.5	10	30
Nickel	0.000731	<0.0004	0.00731	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200
Chloride	3.1	<2	31	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	83.2	<10	832	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	3.09	<3	30.9	<30	500	800	1000

Leach Test Information

Date Prepared	17-Sep-2024
pH (pH Units)	9.38
Conductivity (µS/cm)	109
Volume Leachant (Litres)	0.892

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

CERTIFICATE OF ANALYSIS SDG: 240916-47

Client Ref.: 6338

Report Number: 741825 Location: Cornamaddy Athlone

Superseded Report:

Table of Results - Appendix

Method No	Description
TM104	Determination of Fluoride using the Kone Analyser
TM183	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM414	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID
PM024	Soil preparation including homogenisation, moisture, screens of soils for Asbestos Containing Material
PM115	Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	Determination of Loss on Ignition
TM090	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM116	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM132	ELTRA CS800 Operators Guide
TM133	Determination of pH in Soil and Water using the GLpH pH Meter
TM259	Determination of Phenols in Waters and Leachates by HPLC
TM410	Determination of Coronene in soils by GCMS
TM089	Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12)
TM151	Determination of Hexavalent Chromium using Kone analyser
TM181	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM152	Analysis of Aqueous Samples by ICP-MS
TM168	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM218	The determination of PAH in soil samples by GC-MS
TM256	Determination of pH, EC, TDS and Alkalinity in Aqueous samples
TM415	Determination of Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

Validated

CERTIFICATE OF ANALYSIS

SDG: 240916-47 Client Ref.: 6338

Superseded Report:

Report Number: 741825 Location: Cornamaddy Athlone

Test Completion Dates

Lab Sample No(s)	30368625	30368626	30368627	30368628	30368629	30368630
Customer Sample Ref.	TH3	TH 5	TH 7	TH 9	TH 10	TH 11
AGS Ref.	0.50 0.50	0.50 0.50	0.50 0.50	0.50 0.50	0.50 0.50	0.50 0.50
Depth	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50
Туре	Soil/Solid (S)					
Anions by Kone (w)	20-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024
CEN 10:1 Leachate (1 Stage)	18-Sep-2024	18-Sep-2024	18-Sep-2024	18-Sep-2024	18-Sep-2024	18-Sep-2024
CEN Readings	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
Chromium III	24-Sep-2024	24-Sep-2024	24-Sep-2024	24-Sep-2024	24-Sep-2024	25-Sep-2024
Coronene	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
Dissolved Metals by ICP-MS	20-Sep-2024	24-Sep-2024	23-Sep-2024	24-Sep-2024	19-Sep-2024	19-Sep-2024
Dissolved Organic/Inorganic Carbon	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
EPH by GCxGC-FID	19-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024	20-Sep-2024	19-Sep-2024
EPH CWG GC (S)	19-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024
Fluoride	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
GRO by GC-FID (S)	18-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
Hexavalent Chromium (s)	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
Loss on Ignition in soils	19-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
Mercury Dissolved	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024
Metals in solid samples by OES	24-Sep-2024	24-Sep-2024	24-Sep-2024	25-Sep-2024	25-Sep-2024	25-Sep-2024
Moisture at 105C	18-Sep-2024	17-Sep-2024	17-Sep-2024	17-Sep-2024	17-Sep-2024	17-Sep-2024
PAH 16 & 17 Calc	20-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024
PAH by GCMS	19-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024
PCBs by GCMS	19-Sep-2024	24-Sep-2024	24-Sep-2024	24-Sep-2024	24-Sep-2024	24-Sep-2024
рН	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
pH Value of Filtered Water	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
Phenols by HPLC (W)	20-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024
Sample description	17-Sep-2024	18-Sep-2024	18-Sep-2024	18-Sep-2024	18-Sep-2024	18-Sep-2024
Total Organic Carbon	20-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024	23-Sep-2024
TPH CWG GC (S)	19-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024	20-Sep-2024
VOC MS (S)	18-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024	19-Sep-2024

SDG: 240916-47 Client Ref: 6338

Report Number: 741825

Superseded Report: Location: Cornamaddy Athlone

pendix General

ults are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

- 2. If sufficient sample is received a sub sample will be retained free of charge for 15 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of 15 days after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining

Asbe stos Type	Common Name						
Chrysof le	White Asbests						
Amosite	Brow n Asbestos						
Cro d dolite	Blue Asbe stos						
Fibrous Act nolite	-						
Fib to us Anthop hyll ite	-						
Fibrous Tremol ite	-						

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μm diameter, longer than 5 μm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the luna.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 8 Waste Classification Report

Waste Classification Report

HazWasteOnline™ classifies waste as either hazardous or non-hazardous based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

6338

Description/Comments

Client: Westmeath County Council Engineer: SDS Design Engineers

Site **Project**

Cornamaddy Residential Development Athlone, Co. Westmeath

Classified by

Name: Company:

Stephen Letch Site Investigations Ltd

Date: The Grange 09 Oct 2024 10:11 GMT

12th Lock Road

Telephone: Lucan 00353 86817 9449 K78 F598 HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification

has to be renewed every 3 years.

HazWasteOnline™ Certification: CERTIFIED

Date Hazardous Waste Classification 09 Oct 2019 Most recent 3 year Refresher 04 Oct 2022

Next 3 year Refresher due by Oct 2025

Purpose of classification

2 - Material Characterisation

Address of the waste

Athlone, Co. Westmeath Post Code N/A

SIC for the process giving rise to the waste

43130 Test drilling and boring

Description of industry/producer giving rise to the waste

Site Investigation

Description of the specific process, sub-process and/or activity that created the waste

Soils recovered for environmental testing

Description of the waste

Natural soils

HazWasteOnline[™] Report created by Stephen Letch on 09 Oct 2024

Job summary

	Sample name	Depth [m]	Classification Result	Hazard properties	WAC	Results	Dogo
#		Deptil [III]	Classification Result	Hazaru properties	Inert	Non Haz	Page
1	TP10-0.50	0.50	Non Hazardous		Pass	Pass	5
2	TP11-0.50	0.50	Non Hazardous		Fail	Pass	9
3	TP03-0.50	0.50	Non Hazardous		Pass	Pass	13
4	TP05-0.50	0.50	Non Hazardous		Pass	Pass	17
5	TP07-0.50	0.50	Non Hazardous		Pass	Pass	21
6	TP09-0.50	0.50	Non Hazardous		Pass	Pass	25

Related documents

# Name	Description
1 240916-47.hwol	ALS Hawarden .hwol file used to populate the Job
2 Rilta Suite NEW	waste stream template used to create this Job

WAC results

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate the samples in this Job: "Ireland"

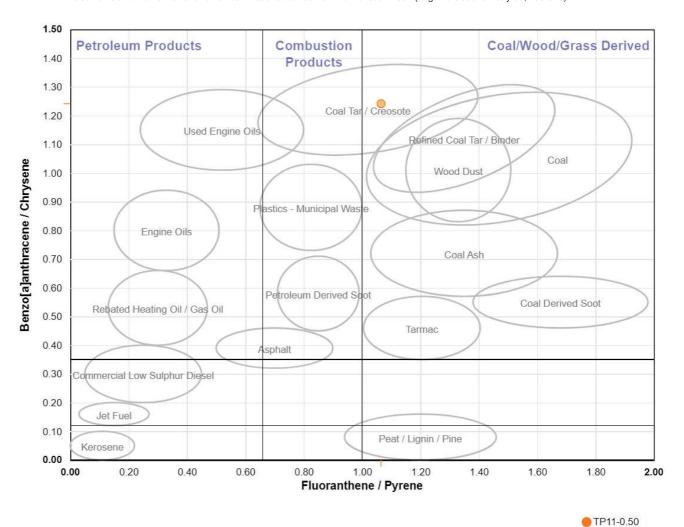
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

Report

Created by: Stephen Letch Created date: 09 Oct 2024 10:11 GMT

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	29
Appendix B: Rationale for selection of metal species	30
Appendix C: Version	31

Page 2 of 32 VQB9S-HGDGT-X1LVK www.hazwasteonline.com

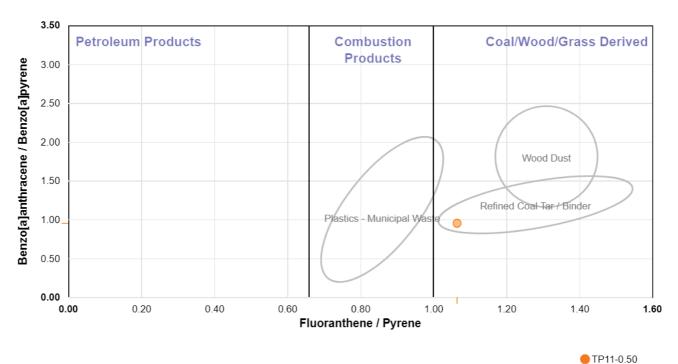

PAH Double Ratio Plots

Disclaimer

The domains, oval areas and the plotted points are **indicators only** and must be combined with other lines of evidence to form conclusions. Samples marked with an empty circle are not plotted as they fall outside of the graph's boundaries.

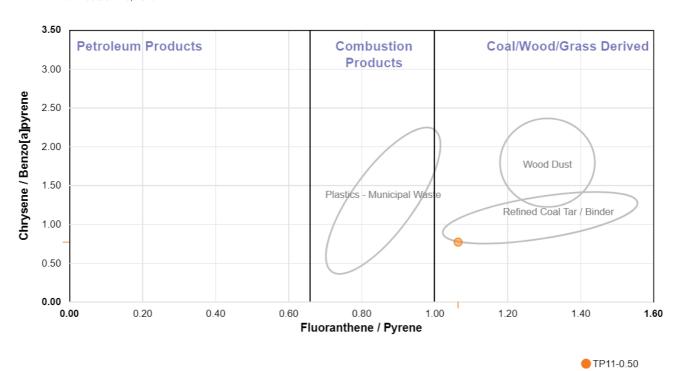
Credits

The domains and the horizontal and vertical lines are derived from Yunker et al. 2002 (Organic Geochemistry 33, 489-515)



Credits for the oval areas and labels

HazWasteOnline, 2023; Jones Environmental Forensics, 2014



Credits for the oval areas and labels

HazWasteOnline, 2023

Credits for the oval areas and labels

HazWasteOnline, 2023

Page 4 of 32 VQB9S-HGDGT-X1LVK www.hazwasteonline.com

Classification of sample: TP10-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: TP10-0.50 Chapter: Sample Depth: 0.50 m Entry:

Moisture content: 17%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	. Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
2	9	confirm TPH has NOT arisen from diesel or petrol		☑					
3	4	antimony { antimony trioxide } 051-005-00-X		1.01 mg/kg	1.197	1.004 mg/kg	0.0001 %	✓	
4	4	arsenic { arsenic pentoxide } 033-004-00-6		13.9 mg/kg	1.534	17.696 mg/kg	0.00177 %	✓	
5		barium {		82.3 mg/kg	1.233	84.259 mg/kg	0.00843 %	√	
6	-			0.937 mg/kg	1.855	1.442 mg/kg	0.000144 %	√	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		30.7 mg/kg	1.126	28.689 mg/kg	0.00287 %	✓	
8	æ	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	27 mg/kg		22.41 mg/kg	0.00224 %	√	
9	æ	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	-	molybdenum { molybdenum(VI) oxide } 042-001-00-9		1.57 mg/kg	1.5	1.955 mg/kg	0.000195 %	✓	
11	4	nickel { nickel sulfate } 028-009-00-5 232-104-9 7786-81-4		62.2 mg/kg	2.637	136.121 mg/kg	0.0136 %	✓	
12	æ \$	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< td=""></lod<>
13				125 mg/kg	2.469	256.19 mg/kg	0.0256 %	√	
14	æ	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		22.7 mg/kg	1.462	27.537 mg/kg	0.00275 %	√	

HazWasteOnline™ Report created by Stephen Letch on 09 Oct 2024

					_							_	
#		Determinand			Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP1			1 doloi			Value	MC	0300
15	4	chromium in chromoxide }				<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		}	215-607-8	1333-82-0								H	
16		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene	205-917-1	208-96-8	-	<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	l .			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene		86-73-7		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	201-581-5	85-01-8		<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
	0	fluoranthene	204-371-1	120-12-7	-								
22			205-912-4	206-44-0		<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3	-	<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne			<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		601-034-00-4 benzo[k]fluoranthei	205-911-9 ne	205-99-2	H	<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
			205-916-6	207-08-9	1								
28		benzo[a]pyrene; be 601-032-00-3		50-32-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyre	ene			<0.018	mg/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrac	205-893-2 ene	193-39-5		<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
				53-70-3	-							L	
31	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	0	polychlorobiphenyl: 602-039-00-4		1336-36-3		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE;	1634-04-4		<0.0005	mg/kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34		benzene	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	601-021-00-3 ethylbenzene	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
	0	601-023-00-4 coronene	202-849-4	100-41-4	-								
37	_	рН	205-881-7	191-07-1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	hi I		PH	-	8.39	рН		8.39	рН	8.39 pH		
		o-xylene; [1] p-xyle	ne; [2] m-xylene; [3	B] xylene [4]									
39		601-022-00-9		95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
		I.	L.2 000 / [1]	1.200 20 / [1]						Total:	0.059 %		
											·	_	

HazWasteOnline[™]
Report created by Stephen Letch on 09 Oct 2024

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP10-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.435	3	5
2	LOI (loss on ignition)	%	3.42	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	pH	рН	8.39	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1	,			
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0862	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0074	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	<0.004	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	31.8	500	800
26	TDS (total dissolved solids)	mg/kg	643	4,000	60,000

Key

User supplied data

Page 8 of 32 VQB9S-HGDGT-X1LVK www.hazwasteonline.com

Classification of sample: TP11-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: TP11-0.50 Chapter: Sample Depth: 0.50 m Entry:

Moisture content:

7.6%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 7.6% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen from diesel or petrol		\square							
3	4	antimony { antimony trioxide } 051-005-00-X		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { arsenic pentoxide } 033-004-00-6		2.74	mg/kg	1.534	3.883	mg/kg	0.000388 %	√	
5		barium {		8.16	mg/kg	1.233	9.3	mg/kg	0.00093 %	✓	
6	4	cadmium { cadmium sulfate } 048-009-00-9 233-331-6 10124-36-4		0.367	mg/kg	1.855	0.629	mg/kg	0.0000629 %	√	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		4.57	mg/kg	1.126	4.754	mg/kg	0.000475 %	√	
8	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	2.95	mg/kg		2.726	mg/kg	0.000273 %	√	
9	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	-	molybdenum { molybdenum(VI) oxide } 042-001-00-9		0.351	mg/kg	1.5	0.487	mg/kg	0.0000487 %	√	
11	4	nickel { nickel sulfate } 7786-81-4		8.88	mg/kg	2.637	21.634	mg/kg	0.00216 %	√	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	f	1.98	mg/kg	1.405	2.57	mg/kg	0.000257 %	✓	
13				19.6	mg/kg	2.469	44.72	mg/kg	0.00447 %	√	
14	æ	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		2.27	mg/kg	1.462	3.066	mg/kg	0.000307 %	√	

HazWasteOnline™ Report created by Stephen Letch on 09 Oct 2024

										-		5	
#			Determinand		Note	User entered data	а	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	
15	æ	chromium in chromoxide }				<1.2 mg/l	kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
		024-001-00-0 naphthalene	215-607-8	1333-82-0	-								
16		·	202-049-5	91-20-3		<0.009 mg/l	kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene	205-917-1	208-96-8		<0.012 mg/l	kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/l	kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	201-695-5	86-73-7		<0.01 mg/l	kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	201-581-5	85-01-8		<0.015 mg/l	kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	9	anthracene	204-371-1	120-12-7		<0.016 mg/l	kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	9	fluoranthene	205-912-4	206-44-0		0.0245 mg/l	kg		0.0226	mg/kg	0.00000226 %	√	
23	0	pyrene	204-927-3	129-00-0	_	0.023 mg/l	kg		0.0213	mg/kg	0.00000213 %	√	
24		benzo[a]anthracen		56-55-3		0.0175 mg/l	kg		0.0162	mg/kg	0.00000162 %	√	
25		chrysene	205-923-4			0.0141 mg/l	kg		0.013	mg/kg	0.0000013 %	√	
26		benzo[b]fluoranthe	ne	218-01-9	\vdash	0.0237 mg/l	kg		0.0219	mg/kg	0.00000219 %	✓	
27		benzo[k]fluoranthei		205-99-2	H	<0.014 mg/l	kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		601-036-00-5 benzo[a]pyrene; be	205-916-6	207-08-9	-								
28			200-028-5	50-32-8	-	0.0184 mg/l	kg		0.017	mg/kg	0.0000017 %	✓	
29	0	indeno[123-cd]pyre	ene	1		<0.018 mg/l	ka		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
		-	205-893-2	193-39-5		10.010 mg/l	'9		-0.010		10.0000010 70		
30		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.023 mg/l	kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.024 mg/l	kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	9	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.021 mg/l	kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl etl 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.0005 mg/l	kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34		benzene	200-753-7	71-43-2	_	<0.001 mg/l	kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3	_	<0.001 mg/l	kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene	202-849-4	100-66-3	_	<0.001 mg/l	kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene			_	<0.2 mg/l	kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	pH	205-881-7	191-07-1	\vdash	8.81 pH			8.81	рН	8.81 pH		
		o-xylene; [1] p-xyle	ne: [2] m-vylene: [PH 31 vylene [4]	+								
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/l	kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.0107 %		
										iotal.	L 3.3 101 /0		

HazWasteOnline[™]
Report created by Stephen Letch on 09 Oct 2024

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP11-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample FAILS the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	3.16	3	5
2	LOI (loss on ignition)	%	1.07	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.81	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	0.0296	0.5	2
10	barium	mg/kg	0.0274	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0227	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	0.0636	0.5	10
16	nickel	mg/kg	0.0073	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	31	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	30.9	500	800
26	TDS (total dissolved solids)	mg/kg	832	4,000	60,000

Key

User supplied data Inert WAC criteria fail

Page 12 of 32 VQB9S-HGDGT-X1LVK www.hazwasteonline.com

Classification of sample: TP03-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: TP03-0.50 Chapter: Sample Depth: 0.50 m Entry:

Moisture content:

15%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered d	lata	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<10 m	ng/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen from diesel or petrol		☑							
3	4	antimony { antimony trioxide } 051-005-00-X		<0.6 m	ng/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { arsenic pentoxide } 033-004-00-6		7.47 m	ng/kg	1.534	9.739	mg/kg	0.000974 %	√	
5		barium {		31.6 m	ng/kg	1.233	33.132	mg/kg	0.00331 %	✓	
6	4	cadmium { cadmium sulfate } 048-009-00-9		0.899 m	ng/kg	1.855	1.417	mg/kg	0.000142 %	✓	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		15.4 m	ng/kg	1.126	14.738	mg/kg	0.00147 %	✓	
8	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	13.3 m	ng/kg		11.305	mg/kg	0.00113 %	✓	
9	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 m	ng/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	-	molybdenum { molybdenum(VI) oxide } 042-001-00-9		0.741 m	ng/kg	1.5	0.945	mg/kg	0.0000945 %	√	
11	4	nickel { nickel sulfate } 7786-81-4		35.2 m	ng/kg	2.637	78.89	mg/kg	0.00789 %	✓	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		1.49 m	ng/kg	1.405	1.779	mg/kg	0.000178 %	√	
13				54.4 m	ng/kg	2.469	114.18	mg/kg	0.0114 %	√	
14	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		11.8 m	ng/kg	1.462	14.659	mg/kg	0.00147 %	√	

HazWasteOnline™ Report created by Stephen Letch on 09 Oct 2024

	$\overline{}$				T							$\overline{\Box}$	
#		Determinand			Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			1 40101			- Value	MC	
15	4	chromium in chromium(VI) compounds { chromium(VI) oxide }				<0.6 mg/kg	g	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0						\vdash				Н	
16		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.009 mg/k	g		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
	0	acenaphthylene	202-049-5	51-20-3	+							Н	
17			205-917-1	208-96-8		<0.012 mg/k	g		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/k	g		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene				<0.01 mg/k	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-							Н	
20	0	phenanthrene	201-581-5	85-01-8		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	204-371-1	120-12-7		<0.016 mg/k	g		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017 mg/k	g		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen		120 00 0		<0.014 mg/k	a		<0.014	mg/kg	<0.0000014 %	П	<lod< td=""></lod<>
		601-033-00-9 chrysene	200-280-6	56-55-3	-								
25		601-048-00-0	205-923-4	218-01-9		<0.01 mg/k	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei		207-08-9		<0.014 mg/k	g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		benzo[a]pyrene; benzo[def]chrysene							:0.045	,,	0.000045.04	Н	
28			200-028-5	50-32-8		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyrene				<0.018 mg/k	g		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
		205-893-2 193-39-5										Н	
30		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3			-	<0.023 mg/k	g		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene				<0.024 mg/ld			<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
31		205-883-8 191-24-2				<0.024 mg/kg	y						\LOD
32	0	polychlorobiphenyl	s; PCB			<0.021 mg/k	g		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
		602-039-00-4 215-648-1 1336-36-3			1				-0.021	g/kg		Ц	
33		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane				<0.0005 mg/k	g		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4			+							Н	
34		benzene 601-020-00-8	200-753-7	71-43-2	-	<0.001 mg/kg	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3		<0.001 mg/k	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene				<0.001 mg/k	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-	0	601-023-00-4 202-849-4 100-41-4 coronene			+							H	
37			205-881-7	191-07-1		<0.2 mg/k	g		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	pH PH				8.52 pH			8.52	рН	8.52 pH		
39		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]			+							Н	
		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/kg	g		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.0293 %	Н	
										iotal.	0.0233 /0		

HazWasteOnline[™]
Report created by Stephen Letch on 09 Oct 2024

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP03-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acceptance Criteria Limits				
#	Determinand	User entered data		Inert waste landfill	Non hazardous waste landfill	
1	TOC (total organic carbon)	%	0.767	3	5	
2	LOI (loss on ignition)	%	3.34	-	-	
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-	
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-	
5	Mineral oil (C10 to C40)		<5	500	-	
6	PAHs (polycyclic aromatic hydrocarbons)		<10	100	-	
7	pH		8.52	-	>6	
8	ANC (acid neutralisation capacity)	mol/kg		-	-	
	Eluate Analysis 10:1					
9	arsenic	mg/kg	<0.005	0.5	2	
10	barium	mg/kg	0.0343	20	100	
11	cadmium	mg/kg	<0.0008	0.04	1	
12	chromium	mg/kg	<0.01	0.5	10	
13	copper	mg/kg	0.0103	2	50	
14	mercury	mg/kg	<0.0001	0.01	0.2	
15	molybdenum	mg/kg	0.0978	0.5	10	
16	nickel	mg/kg	0.0056	0.4	10	
17	lead	mg/kg	0.0039	0.5	10	
18	antimony	mg/kg	<0.01	0.06	0.7	
19	selenium	mg/kg	<0.01	0.1	0.5	
20	zinc	mg/kg	0.0322	4	50	
21	chloride	mg/kg	<20	800	15,000	
22	fluoride	mg/kg	<5	10	150	
23	sulphate	mg/kg	<20	1,000	20,000	
24	phenol index	mg/kg	<0.16	1	-	
25	DOC (dissolved organic carbon)	mg/kg	<30	500	800	
26	TDS (total dissolved solids)	mg/kg	529	4,000	60,000	

Key

User supplied data

Page 16 of 32 VQB9S-HGDGT-X1LVK www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP05-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: TP05-0.50 Chapter: Sample Depth: 0.50 m Entry:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Moisture content:

17%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	IOT arisen from di	esel or petrol		☑							
3	4		ny trioxide } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	-		entoxide } 215-116-9	1303-28-2		10	mg/kg	1.534	12.731	mg/kg	0.00127 %	✓	
5	1	barium { • barium	sulphide }	21109-95-5		68.6	mg/kg	1.233	70.233	mg/kg	0.00702 %	√	
6	4	cadmium { cadmiui		10124-36-4		0.631	mg/kg	1.855	0.971	mg/kg	0.0000971 %	✓	
7	_	copper { dicopper o	oxide; copper (I) ox 215-270-7	<mark>kide</mark> } 1317-39-1		22.5	mg/kg	1.126	21.026	mg/kg	0.0021 %	✓	
8		lead { lead compospecified elsewhere			1	19.8	mg/kg		16.434	mg/kg	0.00164 %	✓	
9	4	mercury { mercury	dichloride }	7487-94-7	-	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	ľ		215-204-7	3 } 1313-27-5		0.868	mg/kg	1.5	1.081	mg/kg	0.000108 %	✓	
11	4	nickel { <mark>nickel sulfa</mark> 028-009-00-5	te } 232-104-9	7786-81-4		45.4	mg/kg	2.637	99.356	mg/kg	0.00994 %	✓	
12		selenium { selenium cadmium sulphose elsewhere in this A	lenide and those s			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13	4		231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		86.8	mg/kg	2.469	177.898	mg/kg	0.0178 %	✓	
14	4	chromium in chrom	nium(III) compound e (worst case) }	ds {		19.9	mg/kg	1.462	24.141	mg/kg	0.00241 %	✓	
			215-160-9	1308-38-9									

HazWasteOnline™ Report created by Stephen Letch on 09 Oct 2024

	$\overline{}$				T								
#		Determinand ELLCLP index			Note	User entered da	ıta	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			T doto!			- Value	MC	
15	4	chromium in chromoxide }		, ,		<0.6 mg	g/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0 naphthalene	215-607-8	1333-82-0	\vdash							Н	
16		· ·	202-049-5	91-20-3	-	<0.009 mg	g/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene		p . 20 0		<0.012 mg	~/l.~		<0.010	no er/l cer	<0.0000012.0/		
17			205-917-1	208-96-8		<0.012 mg	g/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	Θ	acenaphthene	201-469-6	83-32-9		<0.008 mg	g/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene				<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7		10.01	<i>y</i> , ng		-0.01	9/1.9	-0.000001 70	Ш	-205
20	0	phenanthrene	201-581-5	85-01-8		<0.015 mg	g/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	204-371-1	120-12-7		<0.016 mg	g/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017 mg	g/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015 mg	g/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.014 mg	g/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.015 mg	g/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranther	ne 205-916-6	207-08-9		<0.014 mg	g/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
28		benzo[a]pyrene; be	enzo[def]chrysene			<0.015 mg	g/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
			200-028-5	50-32-8		10.010	, ng		-0.010		-0.0000010 /0	Ш	
29	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5	-	<0.018 mg	g/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrace	1	53-70-3		<0.023 mg	g/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene	1	191-24-2		<0.024 mg	g/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	0	polychlorobiphenyl		1336-36-3		<0.021 mg	g/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE;	1634-04-4		<0.0005 mg	g/kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34		benzene	200-753-7	71-43-2		<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3	_	<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene	202-849-4	100-41-4		<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene	205-881-7	191-07-1		<0.2 mg	g/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	рН		PH		8.73 pH	I		8.73	рН	8.73 pH		
		o-xylene; [1] p-xyle	ne: [2] m-xvlene: [:	1	+							Н	
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg	g/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.0438 %	H	
										iotal.	0.0400 /0		

HazWasteOnline[™]
Report created by Stephen Letch on 09 Oct 2024

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Speciated Determinand -**<LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP05-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acce	ptance Criteria Limits		
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.546	3	5
2	LOI (loss on ignition)	%	2.87	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	pH	рН	8.73	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1	,			
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0402	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0182	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0078	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.015	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	33.2	500	800
26	TDS (total dissolved solids)	mg/kg	694	4,000	60,000

Key

User supplied data

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP07-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: TP07-0.50 Chapter: Sample Depth: 0.50 m Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

from contaminated sites)

Moisture content:

14%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered dat	ta	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<10 mg.	ı/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen from diesel or petrol		☑							
3	4	antimony { antimony trioxide } 051-005-00-X		<0.6 mg.	ı/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { arsenic pentoxide } 033-004-00-6		11.9 mg.	ı/kg	1.534	15.698	mg/kg	0.00157 %	√	
5		barium {		65 mg.	/kg	1.233	68.952	mg/kg	0.0069 %	√	
6	-			1.13 mg.	ı/kg	1.855	1.802	mg/kg	0.00018 %	√	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		24.4 mg.	ı/kg	1.126	23.626	mg/kg	0.00236 %	√	
8	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	19.2 mg.	ı/kg		16.512	mg/kg	0.00165 %	√	
9	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg	ı/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	-	molybdenum { molybdenum(VI) oxide } 042-001-00-9		0.901 mg.	ı/kg	1.5	1.162	mg/kg	0.000116 %	✓	
11	4	nickel { nickel sulfate } 028-009-00-5 232-104-9 7786-81-4		57 mg.	/kg	2.637	129.25	mg/kg	0.0129 %	√	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		1.04 mg.	ı/kg	1.405	1.257	mg/kg	0.000126 %	√	
13				85.3 mg.	ı/kg	2.469	181.143	mg/kg	0.0181 %	√	
14	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		18.7 mg	ı/kg	1.462	23.505	mg/kg	0.00235 %	√	

HazWasteOnline™ Report created by Stephen Letch on 09 Oct 2024

					Т			1					
#		Determinand ELLCLP index			Note	User entered data	1	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			1 40101			- Value	MC	
15	4	chromium in chromoxide }				<0.6 mg/k	g	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0 naphthalene	215-607-8	1333-82-0	\vdash							Н	
16		•	202-049-5	91-20-3	-	<0.009 mg/k	(g		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene	202 0 10 0	01200		<0.012 mg/k	(0		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
			205-917-1	208-96-8	1		'9				V0.0000012 /0		LOD
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/k	(g		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	201-695-5	86-73-7		<0.01 mg/k	(g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	201-581-5	85-01-8		<0.015 mg/k	(g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	204-371-1	120-12-7		<0.016 mg/k	cg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0	_	<0.017 mg/k	(g		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015 mg/k	(g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen		56-55-3		<0.014 mg/k	(g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene	205-923-4			<0.01 mg/k	(g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne	218-01-9	\vdash	<0.015 mg/k	(g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei		205-99-2		<0.014 mg/k	(g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		-	205-916-6	207-08-9	-							Н	
28		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8	-	<0.015 mg/k	(g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyre				<0.018 mg/k	(C)		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
23			205-893-2	193-39-5			\9			Ilig/kg	40.0000010 78		LOD
30		dibenz[a,h]anthrace 601-041-00-2	ene 200-181-8	53-70-3		<0.023 mg/k	cg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.024 mg/k	(g		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	0	polychlorobiphenyl	s; PCB 215-648-1	1336-36-3		<0.021 mg/k	(g		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE;	1634-04-4		<0.0005 mg/k	cg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34		benzene	200-753-7	71-43-2		<0.001 mg/k	(g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3		<0.001 mg/k	cg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene	202-849-4	100-41-4		<0.001 mg/k	(g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene		191-07-1		<0.2 mg/k	cg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	рН	205-881-7		_	8.75 pH			8.75	pН	8.75 pH		
		o-vyleno: [1] n vyle	ne: [2] m vulono: [1	PH 31 vylene [/]	\vdash							Н	
39			202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/k	(g		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.0475 %	H	
										iotal.	0.0710 /0		

HazWasteOnline[™]
Report created by Stephen Letch on 09 Oct 2024

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP07-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acce	ptance Criteria Limits		
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.319	3	5
2	LOI (loss on ignition)	%	3.07	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.75	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1	,			
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0369	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.013	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	0.0309	0.5	10
16	nickel	mg/kg	0.0058	0.4	10
17	lead	mg/kg	0.0023	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	44.7	500	800
26	TDS (total dissolved solids)	mg/kg	660	4,000	60,000

Key

User supplied data

Classification of sample: TP09-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: TP09-0.50 Chapter: Sample Depth: 0.50 m Entry:

Moisture content:

17%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) po	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	OT arisen from die	esel or petrol		✓							
3	4		y trioxide }	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	-		entoxide } 215-116-9	1303-28-2		11.5	mg/kg	1.534	14.641	mg/kg	0.00146 %	✓	
5	4		sulphide }	21109-95-5		73.9	mg/kg	1.233	75.659	mg/kg	0.00757 %	√	
6	4		<mark>m sulfate</mark> } 233-331-6	10124-36-4		0.913	mg/kg	1.855	1.405	mg/kg	0.000141 %	✓	
7	4		oxide; copper (I) ox 215-270-7	ide } 1317-39-1		28.9	mg/kg	1.126	27.007	mg/kg	0.0027 %	✓	
8	4	lead { lead compospecified elsewhere 082-001-00-6			1	21.1	mg/kg		17.513	mg/kg	0.00175 %	✓	
9	4	mercury { mercury	dichloride }	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4		y <mark>bdenum(VI) oxide</mark> 215-204-7	} 1313-27-5		1.29	mg/kg	1.5	1.606	mg/kg	0.000161 %	✓	
11	4		te } 232-104-9	7786-81-4		73.8	mg/kg	2.637	161.507	mg/kg	0.0162 %	✓	
12	4	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	lenide and those s			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13	-	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		124	mg/kg	2.469	254.14	mg/kg	0.0254 %	✓	
14	4	chromium in chrom chromium(III) oxide		s { •		23.6	mg/kg	1.462	28.629	mg/kg	0.00286 %	✓	

HazWasteOnline™ Report created by Stephen Letch on 09 Oct 2024

#		Determinand ELLCL Bindoy			Note	User entered data		onv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			0.01			- Value	MC	
15	4	chromium in chromoxide }				<0.6 mg/kg	1.9	923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		-	215-607-8	1333-82-0	\vdash							Н	
16		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.009 mg/kg	9		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
	0	acenaphthylene	202 043 0	p1 20 0								Н	
17	Ĭ		205-917-1	208-96-8		<0.012 mg/kg	3		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/kg	3		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene		'	T	<0.01 mg/kg			<0.01	ma m/l cm	<0.000001 %		<lod< td=""></lod<>
19			201-695-5	86-73-7		<0.01 mg/kg	3		V0.01	mg/kg	<0.000001 %		\LUD
20	0	phenanthrene	201-581-5	85-01-8		<0.015 mg/kg	9		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	204-371-1	120-12-7		<0.016 mg/kg	3		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017 mg/kg	3		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015 mg/kg	3		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen	e 200-280-6	56-55-3		<0.014 mg/kg	3		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01 mg/kg	3		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe		205-99-2		<0.015 mg/kg	3		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei		207-08-9		<0.014 mg/kg	3		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		207 00 0								Н	
28			200-028-5	50-32-8	1	<0.015 mg/kg	3		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyre	ene			<0.018 mg/kg	,		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
			205-893-2	193-39-5		10.010 Hig/K	,		-0.010	mg/kg	10.0000010 70		-100
30		dibenz[a,h]anthrace 601-041-00-2	ene 200-181-8	53-70-3		<0.023 mg/kg	3		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene				<0.024 mg/kg	,		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
<u> </u>			205-883-8	191-24-2	1							H	
32	0	polychlorobiphenyl	T	1226 20 2		<0.021 mg/kg	3		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
\vdash		-	215-648-1 her: MTRE:	1336-36-3	\vdash							H	
33		tert-butyl methyl etl 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.0005 mg/kg	3		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34		benzene	200-753-7	71-43-2		<0.001 mg/kg	3		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3		<0.001 mg/kg	3		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene	202-849-4	100-41-4	_	<0.001 mg/kg	3		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene		191-07-1		<0.2 mg/kg	3		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	рН	205-881-7		_	8.65 pH			8.65	рН	8.65 pH		
\vdash		o valono: [41 m x= 4-	no. [2] m valenc: "	PH	\vdash							Н	
39			202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/kg	3		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
\vdash			215-535-7 [4]	1330-20-7 [4]	L					Total	0.0596 %	H	
<u> </u>										Total:	U.U390 %	\bot	

HazWasteOnline[™]
Report created by Stephen Letch on 09 Oct 2024

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP09-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acce	Landfill Waste Acceptance Criteria Limits			
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill	
1	TOC (total organic carbon)	%	0.301	3	5	
2	LOI (loss on ignition)	%	3.26	-	-	
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-	
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-	
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-	
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-	
7	рН	рН	8.65	-	>6	
8	ANC (acid neutralisation capacity)	mol/kg		-	-	
	Eluate Analysis 10:1					
9	arsenic	mg/kg	<0.005	0.5	2	
10	barium	mg/kg	0.0364	20	100	
11	cadmium	mg/kg	<0.0008	0.04	1	
12	chromium	mg/kg	<0.01	0.5	10	
13	copper	mg/kg	0.017	2	50	
14	mercury	mg/kg	<0.0001	0.01	0.2	
15	molybdenum	mg/kg	0.0875	0.5	10	
16	nickel	mg/kg	0.009	0.4	10	
17	lead	mg/kg	0.0042	0.5	10	
18	antimony	mg/kg	<0.01	0.06	0.7	
19	selenium	mg/kg	<0.01	0.1	0.5	
20	zinc	mg/kg	0.0204	4	50	
21	chloride	mg/kg	<20	800	15,000	
22	fluoride	mg/kg	<5	10	150	
23	sulphate	mg/kg	<20	1,000	20,000	
24	phenol index	mg/kg	<0.16	1	-	
25	DOC (dissolved organic carbon)	mg/kg	34.6	500	800	
26	TDS (total dissolved solids)	mg/kg	680	4,000	60,000	

Key

User supplied data

Appendix A: Classifier defined and non EU CLP determinands

TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350

(HP 7) and Muta. 1B; H340 (HP 11) Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

barium sulphide (EC Number: 244-214-4, CAS Number: 21109-95-5)

EU CLP index number: 016-002-00-X

Description/Comments:

Additional Hazard Statement(s): EUH031 >= 0.8 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH031 >= 0.8 % hazard statement sourced from: WM3, Table C12.2

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

EU CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2;

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

HazWasteOnline[™]
Report created by Stephen Letch on 09 Oct 2024

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

[®] coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

pH (CAS Number: PH)

Description/Comments: Appendix C4
Data source: WM3 1st Edition 2015
Data source date: 25 May 2015
Hazard Statements: None.

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case scenario.

arsenic {arsenic pentoxide}

Arsenic pentoxide used as most hazardous species.

Page 30 of 32 VQB9S-HGDGT-X1LVK www.hazwasteonline.com

barium {barium sulphide}

Chromium VI at limits of detection. Barium sulphide used as the next most hazardous species. No chromate present.

cadmium {cadmium sulfate}

Cadmium sulphate used as the most hazardous species.

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead (lead compounds with the exception of those specified elsewhere in this Annex (worst case))

Chromium VI at limits of detection. Lead compounds used as the next most hazardous species. No chromate present.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight.

nickel {nickel sulfate}

Chromium VI at limits of detection. Nickel sulphate used as the next most hazardous species. No chromate present.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc sulphate}

Chromium VI at limits of detection. Zinc sulphate used as the next most hazardous species. No chromate present.

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1.NI - Jan 2021
HazWasteOnline Classification Engine Version: 2024.281.6280.11501 (07 Oct 2024)

HazWasteOnline Database: 2024.281.6280.11501 (07 Oct 2024)

This classification utilises the following guidance and legislation:

WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

 $\mbox{3rd}$ \mbox{ATP} - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013 **6th ATP** - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021

18th ATP - Regulation (EU) 2022/692 of 16 February 2022

19th ATP - Regulation (EU) 2023/1434 of 25 April 2023

20th ATP - Regulation (EU) 2023/1435 of 2 May 2023

21st ATP - Regulation (EU) 2024/197 of 19 October 2023

Page 32 of 32 VQB9S-HGDGT-X1LVK www.hazwasteonline.com

Appendix 9 Survey Data

Survey Data

	Irish Transve	erse Mercator	Flooriton	Irish Nati	ional Grid
Location	Easting	Northing	- Elevation	Easting	Northing
		Cable Percus	sive Borehole	es	
BH01	605924.007	742865.924	43.97	205974.539	242840.939
BH02	605877.411	742952.515	44.02	205927.932	242927.548
BH03	606014.395	742728.004	45.34	206064.947	242702.989
BH03A	606014.819	742726.802	45.36	206065.371	242701.787
BH03B	606015.542	742725.737	45.37	206066.094	242700.722
BH04	605856.386	742828.473	44.01	205906.903	242803.479
BH05	605888.970	742863.148	43.94	205939.494	242838.162
BH06	605898.822	742785.271	44.21	205949.349	242760.268
BH07	605831.519	742793.085	44.20	205882.031	242768.083
BH08	605829.184	742873.111	44.01	205879.695	242848.127
BH09	605943.123	742698.203	46.66	205993.660	242673.182
BH10	605946.997	742786.081	44.27	205997.534	242761.078
BH11	605834.396	742928.180	43.97	205884.908	242903.207
BH12	606086.872	742615.273	57.69	206137.440	242590.234
_		Tria	al Pits		
TP01	605990.760	742736.565	44.96	206041.307	242711.552
TP02	605955.185	742728.880	44.66	206005.724	242703.865
TP03	605949.948	742770.653	44.32	206000.486	242745.647
TP04	605913.450	742839.098	43.87	205963.980	242814.107
TP05	605837.423	742825.893	44.08	205887.936	242800.898
TP06	605877.537	742812.037	44.07	205928.059	242787.040
TP07	605858.334	742941.324	44.14	205908.851	242916.354
TP08	605853.542	742860.716	43.94	205904.058	242835.729
TP09	605907.329	742877.109	44.08	205957.857	242852.126
TP10	605836.265	742908.803	43.92	205886.778	242883.826
TP11	606086.092	742605.677	57.93	206136.660	242580.636
TP12	605854.602	742884.667	43.95	205905.119	242859.685
		Soakav	vay Tests		
INF01	605900.846	742831.947	43.86	205951.373	242806.954
INF02	605854.660	742899.283	43.83	205905.177	242874.304
INF03	605942.814	742762.030	44.20	205993.350	242737.022
INF04	606098.845	742606.519	58.02	206149.416	242581.479
INF05	605900.984	742918.186	43.96	205951.511	242893.212
		Plate	e Tests		
PLT01	605934.593	742813.850	44.06	205985.127	242788.853
PLT02	605926.272	742806.102	44.03	205976.805	242781.104
PLT03	605840.270	742911.983	43.90	205890.783	242887.007
PLT04	605856.461	742789.654	44.22	205906.978	242764.652

Survey Data

Location	Irish Transve	erse Mercator	Elevation	Irish National Grid				
Location	Easting	Northing	Elevation	Easting	Northing			
PLT05	PLT05 605939.847 742755.320 PLT06 605995.664 742721.485		44.24	205990.383	242730.311			
PLT06			45.29	206046.212	242696.469			
PLT07	605882.389	742936.034	43.98	205932.911	242911.063			
PLT08	605848.393	742854.541	44.01	205898.908	242829.553			
PLT09	PLT09 606072.976 7		57.53	206123.541	242576.015			
PLT10 605906.042		742865.448	43.98	205956.570	242840.462			

APPENDIX C – MICRODRAINAGE OUTPUTS

SDS (Structural Design Solutions	Page 1	
Unit 9, N5 Business Park	Attenuation Tank Check	
Castlebar, Co. Mayo		
Ireland. F23 E283		Micro
Date 23/05/2025 15:19	Designed by AT	Drainage
File TANK 1 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+30%)

Half Drain Time : 68 minutes.

	Storm Event		Max Level	Max Depth	Max Infiltration		Σ		Max Volume	Status
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
15	min S	Summer	42.856	0.556	0.0	20.5		20.5	79.2	O K
30	min S	Summer	43.049	0.749	0.0	20.5		20.5	106.7	O K
60	min S	Summer	43.198	0.898	0.0	20.5		20.5	128.0	O K
120	min S	Summer	43.246	0.946	0.0	20.5		20.5	134.8	O K
180	min S	Summer	43.231	0.931	0.0	20.5		20.5	132.6	O K
240	min S	Summer	43.192	0.892	0.0	20.5		20.5	127.2	O K
360	min S	Summer	43.088	0.788	0.0	20.5		20.5	112.3	O K
480	min S	Summer	42.984	0.684	0.0	20.5		20.5	97.5	O K
600	min S	Summer	42.888	0.588	0.0	20.5		20.5	83.8	O K
720	min S	Summer	42.803	0.503	0.0	20.5		20.5	71.6	O K
960	min S	Summer	42.671	0.371	0.0	20.4		20.4	52.8	O K
1440	min S	Summer	42.530	0.230	0.0	19.4		19.4	32.8	O K
2160	min S	Summer	42.475	0.175	0.0	15.9		15.9	24.9	O K
2880	min S	Summer	42.451	0.151	0.0	13.2		13.2	21.5	O K
4320	min S	Summer	42.425	0.125	0.0	9.9		9.9	17.8	O K
5760	min S	Summer	42.411	0.111	0.0	8.1		8.1	15.7	O K
7200	min S	Summer	42.401	0.101	0.0	6.9		6.9	14.3	O K
8640	min S	Summer	42.393	0.093	0.0	6.0		6.0	13.3	O K
10080	min S	Summer	42.388	0.088	0.0	5.4		5.4	12.5	O K
15	min V	Winter	42.933	0.633	0.0	20.5		20.5	90.2	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	81.655	0.0	97.1	22
30	min	Summer	56.745	0.0	135.0	34
60	min	Summer	37.335	0.0	178.0	60
120	min	Summer	23.646	0.0	225.4	94
180	min	Summer	17.956	0.0	256.8	130
240	min	Summer	14.725	0.0	280.8	164
360	min	Summer	11.108	0.0	317.8	230
480	min	Summer	9.079	0.0	346.3	294
600	min	Summer	7.759	0.0	370.0	354
720	min	Summer	6.822	0.0	390.3	414
960	min	Summer	5.565	0.0	424.5	528
1440	min	Summer	4.173	0.0	477.5	752
2160	min	Summer	3.129	0.0	537.2	1104
2880	min	Summer	2.550	0.0	583.7	1468
4320	min	Summer	1.909	0.0	655.2	2200
5760	min	Summer	1.552	0.0	710.8	2912
7200	min	Summer	1.322	0.0	756.6	3616
8640	min	Summer	1.159	0.0	796.1	4400
10080	min	Summer	1.037	0.0	830.8	5048
15	min	Winter	81.655	0.0	108.8	23

SDS (Structural Design Solutions	Page 2	
Unit 9, N5 Business Park	Attenuation Tank Check	
Castlebar, Co. Mayo		
Ireland. F23 E283		Micro
Date 23/05/2025 15:19	Designed by AT	Drainage
File TANK 1 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+30%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min Wi	inter	43.159	0.859	0.0	20.5	20.5	122.4	O K
60	min Wi	inter	43.332	1.032	0.0	20.5	20.5	147.1	O K
120	min Wi	inter	43.379	1.079	0.0	20.5	20.5	153.7	O K
180	min Wi	inter	43.348	1.048	0.0	20.5	20.5	149.3	O K
240	min Wi	inter	43.286	0.986	0.0	20.5	20.5	140.6	O K
360	min Wi	inter	43.110	0.810	0.0	20.5	20.5	115.5	O K
480	min Wi	inter	42.935	0.635	0.0	20.5	20.5	90.5	O K
600	min Wi	inter	42.788	0.488	0.0	20.5	20.5	69.5	O K
720	min Wi	inter	42.672	0.372	0.0	20.4	20.4	53.1	O K
960	min Wi	inter	42.534	0.234	0.0	19.5	19.5	33.4	O K
1440	min Wi	inter	42.471	0.171	0.0	15.5	15.5	24.4	O K
2160	min Wi	inter	42.439	0.139	0.0	11.7	11.7	19.8	O K
2880	min Wi	inter	42.423	0.123	0.0	9.6	9.6	17.5	O K
4320	min Wi	inter	42.403	0.103	0.0	7.2	7.2	14.7	O K
5760	min Wi	inter	42.392	0.092	0.0	5.8	5.8	13.0	O K
7200	min Wi	inter	42.384	0.084	0.0	5.0	5.0	11.9	O K
8640	min Wi	inter	42.378	0.078	0.0	4.4	4.4	11.1	ОК
10080	min Wi	inter	42.373	0.073	0.0	3.9	3.9	10.4	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
20		T-7	E C 7 1 E	0 0	151 2	2.5
		Winter		0.0	151.3	35
60		Winter	37.335	0.0	199.3	62
120	min	Winter	23.646	0.0	252.5	100
180	min	Winter	17.956	0.0	287.7	138
240	min	Winter	14.725	0.0	314.5	178
360	min	Winter	11.108	0.0	355.9	248
480	min	Winter	9.079	0.0	387.9	312
600	min	Winter	7.759	0.0	414.4	370
720	min	Winter	6.822	0.0	437.2	424
960	min	Winter	5.565	0.0	475.5	524
1440	min	Winter	4.173	0.0	534.8	744
2160	min	Winter	3.129	0.0	601.7	1104
2880	min	Winter	2.550	0.0	653.8	1468
4320	min	Winter	1.909	0.0	733.9	2176
5760	min	Winter	1.552	0.0	796.1	2888
7200	min	Winter	1.322	0.0	847.5	3608
8640	min	Winter	1.159	0.0	891.6	4376
10080	min	Winter	1.037	0.0	930.5	5064

SDS (Structural Design Solutions	Page 3	
Unit 9, N5 Business Park		
Castlebar, Co. Mayo		
Ireland. F23 E283	Micro	
Date 23/05/2025 15:19	Designed by AT	Drainage
File TANK 1 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	•

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region Scotland and Ireland Cv (Winter) 0.840
M5-60 (mm) 14.500 Shortest Storm (mins) 15
Ratio R 0.277 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time Area Diagram

Total Area (ha) 0.636

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.212	4	8	0.212	8	12	0.212

SDS (Structural Design Solutions	Page 4					
Unit 9, N5 Business Park Attenuation Tank Check						
Castlebar, Co. Mayo						
Ireland. F23 E283						
Date 23/05/2025 15:19	Designed by AT	Micro Drainage				
File TANK 1 - 21.05.2025.SRCX	Checked by CD	Dialilade				
Innovyze	Source Control 2020.1					

Model Details

Storage is Online Cover Level (m) 44.420

Cellular Storage Structure

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	1	L50.0			0.0	1.	321		0.0			0.0
1.	320	1	150.0			0.0	2.	120		0.0			0.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0196-2050-1320-2050 1.320 Design Head (m) Design Flow (1/s) 20.5 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 196 Invert Level (m) 42.300 Minimum Outlet Pipe Diameter (mm) 225 1500 Suggested Manhole Diameter (mm)

, ,	
1.320	20.5
0.406	20.5
0.892	17.0
_	17.6
	0.406

Control Points Head (m) Flow (1/s)

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) I	Flow (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	6.8	1.200	19.6	3.000	30.4	7.000	45.7
0.200	18.4	1.400	21.1	3.500	32.7	7.500	47.2
0.300	20.2	1.600	22.5	4.000	34.9	8.000	48.7
0.400	20.5	1.800	23.8	4.500	36.9	8.500	50.2
0.500	20.3	2.000	25.0	5.000	38.8	9.000	51.6
0.600	20.0	2.200	26.2	5.500	40.7	9.500	53.0
0.800	18.6	2.400	27.3	6.000	42.4		
1.000	18.0	2.600	28.3	6.500	44.1		

SDS (Structural Design Solutions	Page 1	
Unit 9, N5 Business Park	Attenuation Tank Check	
Castlebar, Co. Mayo		
Ireland. F23 E283		Micro
Date 23/05/2025 15:55	D = = - = = = = 1 l= = 7 M	Drainage
File TANK 2 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+30%)

Half Drain Time : 275 minutes.

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Σ	Max Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
			42.362 42.515		0.0	4.8 4.8		4.8	58.7 80.5	0 K
60	min S	Summer	42.668	0.718	0.0	4.8		4.8	102.4	O K
			42.802 42.856	0.852	0.0	4.8 4.8		4.8 4.8	121.4 129.2	0 K 0 K
			42.877		0.0	4.8 4.8		4.8	132.0 133.0	0 K 0 K
			42.877 42.864		0.0	4.8		4.8	132.1 130.3	0 K
720	min S	Summer		0.898	0.0	4.8		4.8	128.0	0 K
1440	min S	Summer	42.706	0.756	0.0	4.8		4.8	107.7	O K
			42.546		0.0	4.8 4.8		4.8 4.8	84.9 66.1	0 K 0 K
			42.232 42.131		0.0	4.7 4.5		4.7 4.5	40.2	0 K 0 K
			42.076		0.0	4.1 3.9		4.1 3.9	17.9 13.7	0 K
10080	min S	Summer	42.033 42.415	0.083	0.0	3.5		3.5	11.9	0 K 0 K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	81.655	0.0	63.8	25
30	min	Summer	56.745	0.0	88.7	39
60	min	Summer	37.335	0.0	116.7	68
120	min	Summer	23.646	0.0	147.8	126
180	min	Summer	17.956	0.0	168.4	182
240	min	Summer	14.725	0.0	184.1	240
360	min	Summer	11.108	0.0	208.4	304
480	min	Summer	9.079	0.0	227.1	368
600	min	Summer	7.759	0.0	242.6	436
720	min	Summer	6.822	0.0	256.0	506
960	min	Summer	5.565	0.0	278.4	646
1440	min	Summer	4.173	0.0	313.2	918
2160	min	Summer	3.129	0.0	352.2	1296
2880	min	Summer	2.550	0.0	382.7	1648
4320	min	Summer	1.909	0.0	429.6	2340
5760	min	Summer	1.552	0.0	466.0	3008
7200	min	Summer	1.322	0.0	496.0	3688
8640	min	Summer	1.159	0.0	521.9	4408
10080	min	Summer	1.037	0.0	544.8	5136
15	min	Winter	81.655	0.0	71.4	25

SDS (S	Page 2		
Unit 9	9, N5 Business Park	Attenuation Tank Check	
Castle	ebar, Co. Mayo		
Irelar	nd. F23 E283		Micro
Date 2	23/05/2025 15:55	Designed by AT	Drainage
File 7	TANK 2 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innov	yze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+30%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min V	Winter	42.590	0.640	0.0	4.8	4.8	91.2	O K
60	min V	Winter	42.769	0.819	0.0	4.8	4.8	116.8	O K
120	min V	Winter	42.924	0.974	0.0	4.8	4.8	138.8	O K
180	min N	Winter	42.992	1.042	0.0	4.8	4.8	148.5	O K
240	min N	Winter	43.023	1.073	0.0	4.8	4.8	152.9	O K
360	min N	Winter	43.033	1.083	0.0	4.8	4.8	154.3	O K
480	min V	Winter	43.020	1.070	0.0	4.8	4.8	152.5	O K
600	min N	Winter	43.001	1.051	0.0	4.8	4.8	149.8	O K
720	min N	Winter	42.976	1.026	0.0	4.8	4.8	146.2	O K
960	min N	Winter	42.913	0.963	0.0	4.8	4.8	137.2	O K
1440	min N	Winter	42.757	0.807	0.0	4.8	4.8	115.0	O K
2160	min N	Winter	42.486	0.536	0.0	4.8	4.8	76.4	O K
2880	min N	Winter	42.300	0.350	0.0	4.8	4.8	49.8	O K
4320	min N	Winter	42.109	0.159	0.0	4.4	4.4	22.6	O K
5760	min N	Winter	42.043	0.093	0.0	3.8	3.8	13.3	O K
7200	min N	Winter	42.025	0.075	0.0	3.2	3.2	10.7	O K
8640	min V	Winter	42.014	0.064	0.0	2.9	2.9	9.1	O K
0800	min V	Winter	42.006	0.056	0.0	2.5	2.5	8.0	O K

Storm			Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	56.745	0.0	99.3	39
60	min	Winter	37.335	0.0	130.7	68
120	min	Winter	23.646	0.0	165.6	124
180	min	Winter	17.956	0.0	188.6	180
240	min	Winter	14.725	0.0	206.2	236
360	min	Winter	11.108	0.0	233.4	340
480	min	Winter	9.079	0.0	254.4	386
600	min	Winter	7.759	0.0	271.8	464
720	min	Winter	6.822	0.0	286.8	542
960	min	Winter	5.565	0.0	311.8	698
1440	min	Winter	4.173	0.0	350.8	1006
2160	min	Winter	3.129	0.0	394.5	1364
2880	min	Winter	2.550	0.0	428.8	1704
4320	min	Winter	1.909	0.0	481.3	2340
5760	min	Winter	1.552	0.0	522.0	2944
7200	min	Winter	1.322	0.0	555.6	3672
8640	min	Winter	1.159	0.0	584.6	4368
10080	min	Winter	1.037	0.0	610.2	5144

SDS (Structural Design Solution	Page 3	
Unit 9, N5 Business Park	Attenuation Tank Check	
Castlebar, Co. Mayo		
Ireland. F23 E283		Micro
Date 23/05/2025 15:55	Designed by AT	Drainage
File TANK 2 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region Scotland and Ireland Cv (Winter) 0.840
M5-60 (mm) 14.500 Shortest Storm (mins) 15
Ratio R 0.277 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time Area Diagram

Total Area (ha) 0.417

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.139	4	8	0.139	8	12	0.139

SDS (Structural Design Solutions	Page 4	
Unit 9, N5 Business Park	Attenuation Tank Check	
Castlebar, Co. Mayo		
Ireland. F23 E283		Micro
Date 23/05/2025 15:55	Designed by AT	Drainage
File TANK 2 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 44.000

Cellular Storage Structure

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	1	L50.0			0.0	1.	321		0.0			0.0
1.	320	1	150.0			0.0	2.	0.50		0.0			0.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0099-4800-1320-4800 1.320 Design Head (m) Design Flow (1/s) 4.8 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 99 Invert Level (m) 41.925 Minimum Outlet Pipe Diameter (mm) 150 1200 Suggested Manhole Diameter (mm)

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.320	4.8
	Flush-Flo™	0.397	4.8
	Kick-Flo®	0.815	3.8
Mean Flow over	r Head Range	-	4.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flor	w (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	3.2	1.200	4.6	3.000	7.0	7.000	10.5
0.200	4.4	1.400	4.9	3.500	7.6	7.500	10.9
0.300	4.7	1.600	5.2	4.000	8.1	8.000	11.2
0.400	4.8	1.800	5.5	4.500	8.5	8.500	11.5
0.500	4.7	2.000	5.8	5.000	9.0	9.000	11.9
0.600	4.6	2.200	6.1	5.500	9.4	9.500	12.2
0.800	3.9	2.400	6.3	6.000	9.8		
1.000	4.2	2.600	6.6	6.500	10.2		

SDS (Structural Design Solutions	Page 1	
Unit 9, N5 Business Park	Attenuation Tank Check	
Castlebar, Co. Mayo		
Ireland. F23 E283		Micro
Date 23/05/2025 16:04	Designed by AT	Drainage
File Tank 3 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+30%)

Half Drain Time : 254 minutes.

	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min Summ	er 42.040	0.440	0.0	7.2	7.2	83.5	0 K
30	min Summ	er 42.203	0.603	0.0	7.2	7.2	114.6	O K
60	min Summ	er 42.367	0.767	0.0	7.2	7.2	145.7	O K
120	min Summ	er 42.503	0.903	0.0	7.2	7.2	171.5	O K
180	min Summ	er 42.554	0.954	0.0	7.2	7.2	181.3	O K
240	min Summ	er 42.570	0.970	0.0	7.2	7.2	184.3	O K
360	min Summ	er 42.575	0.975	0.0	7.2	7.2	185.2	O K
480	min Summ	er 42.566	0.966	0.0	7.2	7.2	183.5	O K
600	min Summ	er 42.551	0.951	0.0	7.2	7.2	180.6	O K
720	min Summ	er 42.532	0.932	0.0	7.2	7.2	177.0	O K
960	min Summ	er 42.487	0.887	0.0	7.2	7.2	168.5	O K
1440	min Summ	er 42.373	0.773	0.0	7.2	7.2	146.9	O K
2160	min Summ	er 42.191	0.591	0.0	7.2	7.2	112.3	O K
2880	min Summ	er 42.047	0.447	0.0	7.2	7.2	85.0	O K
4320	min Summ	er 41.858	0.258	0.0	7.1	7.1	48.9	O K
5760	min Summ	er 41.761	0.161	0.0	6.6	6.6	30.5	O K
7200	min Summ	er 41.712	0.112	0.0	6.2	6.2	21.3	ОК
8640	min Summ	er 41.693	0.093	0.0	5.6	5.6	17.6	ОК
10080	min Summ	er 41.680	0.080	0.0	5.0	5.0	15.2	ОК
		er 42.097		0.0	7.2	7.2	94.4	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak		
	Even	t	(mm/hr)	Volume	Volume	(mins)		
				(m³)	(m³)			
15	min	Summer	81.655	0.0	91.3	25		
30	min	Summer	56.745	0.0	126.9	39		
60	min	Summer	37.335	0.0	167.0	68		
120	min	Summer	23.646	0.0	211.7	124		
180	min	Summer	17.956	0.0	241.1	182		
240	min	Summer	14.725	0.0	263.6	234		
360	min	Summer	11.108	0.0	298.4	294		
480	min	Summer	9.079	0.0	325.1	358		
600	min	Summer	7.759	0.0	347.4	428		
720	min	Summer	6.822	0.0	366.4	498		
960	min	Summer	5.565	0.0	398.6	638		
1440	min	Summer	4.173	0.0	448.3	914		
2160	min	Summer	3.129	0.0	504.1	1280		
2880	min	Summer	2.550	0.0	548.0	1644		
4320	min	Summer	1.909	0.0	615.3	2332		
5760	min	Summer	1.552	0.0	667.2	3000		
7200	min	Summer	1.322	0.0	710.2	3680		
8640	min	Summer	1.159	0.0	747.3	4408		
10080	min	Summer	1.037	0.0	780.0	5136		
15	min	Winter	81.655	0.0	102.3	25		

SDS (Structural Design Solutions	Page 2	
Unit 9, N5 Business Park	Attenuation Tank Check	
Castlebar, Co. Mayo		
Ireland. F23 E283		Micro
Date 23/05/2025 16:04	Designed by AT	Drainage
File Tank 3 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+30%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min 1	Wintor	42.284	0 694	0.0	7.2	7.2	129.9	ОК
						7.2	7.2		
			42.473		0.0				O K
120	min '	Winter	42.632	1.032	0.0	7.2	7.2	196.1	O K
180	min	Winter	42.699	1.099	0.0	7.2	7.2	208.9	O K
240	min '	Winter	42.726	1.126	0.0	7.2	7.2	214.0	O K
360	min 1	Winter	42.728	1.128	0.0	7.2	7.2	214.3	O K
480	min 1	Winter	42.714	1.114	0.0	7.2	7.2	211.7	O K
600	min 1	Winter	42.690	1.090	0.0	7.2	7.2	207.1	O K
720	min 1	Winter	42.659	1.059	0.0	7.2	7.2	201.1	O K
960	min 1	Winter	42.585	0.985	0.0	7.2	7.2	187.2	O K
1440	min 1	Winter	42.409	0.809	0.0	7.2	7.2	153.7	O K
2160	min 1	Winter	42.109	0.509	0.0	7.2	7.2	96.7	O K
2880	min 1	Winter	41.914	0.314	0.0	7.2	7.2	59.6	O K
4320	min 1	Winter	41.732	0.132	0.0	6.4	6.4	25.2	O K
5760	min 1	Winter	41.689	0.089	0.0	5.4	5.4	16.9	O K
7200	min 1	Winter	41.672	0.072	0.0	4.7	4.7	13.7	O K
8640	min 1	Winter	41.661	0.061	0.0	4.1	4.1	11.7	O K
0800	min 1	Winter	41.654	0.054	0.0	3.7	3.7	10.3	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	56.745	0.0	142.2	39
60	min	Winter	37.335	0.0	187.1	66
120	min	Winter	23.646	0.0	237.0	122
180	min	Winter	17.956	0.0	270.0	180
240	min	Winter	14.725	0.0	295.2	234
360	min	Winter	11.108	0.0	334.1	330
480	min	Winter	9.079	0.0	364.2	378
600	min	Winter	7.759	0.0	389.1	458
720	min	Winter	6.822	0.0	410.6	536
960	min	Winter	5.565	0.0	446.5	692
1440	min	Winter	4.173	0.0	502.1	998
2160	min	Winter	3.129	0.0	564.9	1348
2880	min	Winter	2.550	0.0	613.8	1676
4320	min	Winter	1.909	0.0	689.0	2296
5760	min	Winter	1.552	0.0	747.2	2944
7200	min	Winter	1.322	0.0	795.5	3672
8640	min	Winter	1.159	0.0	836.7	4408
10080	min	Winter	1.037	0.0	873.6	5136

SDS (Structural Design Solutions	Page 3	
Unit 9, N5 Business Park	Attenuation Tank Check	
Castlebar, Co. Mayo		
Ireland. F23 E283		Micro
Date 23/05/2025 16:04	Designed by AT	Drainage
File Tank 3 - 21.05.2025.SRCX	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region Scotland and Ireland Cv (Winter) 158
M5-60 (mm) 14.500 Shortest Storm (mins) 15
Ratio R 0.277 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time Area Diagram

Total Area (ha) 0.597

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.199	4	8	0.199	8	12	0.199

SDS (Structural Design Solutions) Ltd								
Unit 9, N5 Business Park	Attenuation Tank Check							
Castlebar, Co. Mayo								
Ireland. F23 E283		Micro						
Date 23/05/2025 16:04	Designed by AT	Drainage						
File Tank 3 - 21.05.2025.SRCX	Checked by CD	Dialilade						
Innovyze	Source Control 2020.1							

Model Details

Storage is Online Cover Level (m) 44.100

Cellular Storage Structure

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	000	2	200.0			0.0	1.	321		0.0			0.0
1.	320	2	2.00.0			0.0	2.	500		0.0			0.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0121-7200-1320-7200 Design Head (m) 1.320 Design Flow (1/s) 7.2 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 121 Invert Level (m) 41.565 Minimum Outlet Pipe Diameter (mm) 150 1200 Suggested Manhole Diameter (mm)

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.320	7.2
	Flush-Flo™	0.393	7.2
	Kick-Flo®	0.828	5.8
Mean Flow ove	r Head Range	_	6.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	4.3	1.200	6.9	3.000	10.6	7.000	15.9
0.200	6.7	1.400	7.4	3.500	11.4	7.500	16.4
0.300	7.1	1.600	7.9	4.000	12.1	8.000	16.9
0.400	7.2	1.800	8.3	4.500	12.8	8.500	17.4
0.500	7.1	2.000	8.7	5.000	13.5	9.000	17.9
0.600	7.0	2.200	9.1	5.500	14.1	9.500	18.4
0.800	6.0	2.400	9.5	6.000	14.7		
1.000	6.3	2.600	9.9	6.500	15.3		

APPENDIX D – MET ÉIREANN RAINFALL RETURN PERIOD DATA

Met Eireann
Return Period Rainfall Depths for sliding Durations
Irish Grid: Easting: 205910, Northing: 242778,

	Interval						Years								
DURATION	6months, 1year,	2,	3,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.5, 3.4,	3.9,	4.6,	5.1,	5.4,	6.5,	7.8,	8.6,	9.8,	10.8,	11.5,	12.7,	13.6,	14.3,	N/A,
10 mins	3.5, 4.8,	5.4,	6.4,	7.0,	7.5,	9.1,	10.9,	12.0,	13.6,	15.0,	16.1,	17.7,	18.9,	19.9,	N/A,
15 mins	4.2, 5.6,	6.4,	7.5,	8.3,	8.9,	10.7,	12.8,	14.1,	16.0,	17.6,	18.9,	20.8,	22.3,	23.5,	N/A,
30 mins	5.5, 7.3,	8.3.	9.7.	10.6.	11.3.	13.6,	16.1,	17.7,	19.9,	21.9,	23.3,	25.6,	27.3,	28.7,	N/A,
1 hours	7.3, 9.6,	10.8,	12.5,	13.6,	14.5,	17.2,	20.3,	22.2,	24.8,	27.1,	28.9,	31.5,	33.5,	35.2,	N/A,
2 hours	9.6, 12.5,	14.0,	16.1,	17.5,	18.5,	21.9,	25.5,	27.8,	30.9,	33.6,	35.7,	38.8,	41.2,	43.1,	N/A ,
3 hours	11.3, 14.6,	16.2,	18.6,	20.2,	21.4,	25.1,	29.1,	31.7,	35.1,	38.1,	40.4,	43.8,	46.4,	48.5,	N/A ,
4 hours	12.7, 16.3,	18.1,	20.7,	22.4,	23.7,	27.7,	32.0,	34.8,	38.5,	41.7,	44.1,	47.8,	50.5,	52.8,	N/A ,
6 hours	14.9, 19.0,	21.1,	24.0,	25.9,	27.3,	31.8,	36.6,	39.7,	43.8,	47.3,	50.0,	53.9,	57.0,	59.4,	N/A ,
9 hours	17.6, 22.2,	24.5,	27.8,	30.0,	31.6,	36.6,	41.9,	45.2,	49.8,	53.6,	56.6,	60.9,	64.2,	66.9,	N/A ,
12 hours	19.7, 24.8,	27.3,	30.9,	33.2,	34.9,	40.4,	46.1,	49.7,	54.5,	58.6,	61.8,	66.4,	69.9,	72.7,	N/A ,
18 hours	23.2, 29.0,	31.8,	35.8,	38.4,	40.3,	46.4,	52.7,	56.7,	62.0,	66.5,	69.9,	75.0,	78.8,	81.9,	N/A,
24 hours	26.1, 32.4,	35.4,	39.8,	42.6,	44.7,	51.2,	58.0,	62.2,	67.9,	72.7,	76.4,	81.7,	85.8,	89.1,	100.0,
2 days	32.4, 39.3,	42.6,	47.2,	50.1,	52.3,	59.0,	65.9,	70.2,	75.9,	80.7,	84.3,	89.5,	93.5,	96.6,	107.1,
3 days	38.0, 45.3,	48.8,	53.7,	56.8,	59.1,	66.1,	73.2,	77.6,	83.4,	88.3,	91.9,	97.2,	101.1,	104.3,	114.8,
4 days	43.0, 50.8,	54.5,	59.6,	62.9,	65.3,	72.5,	79.9,	84.4,	90.4,	95.3,	99.0,	104.4,	108.4,	111.6,	122.1,
6 days	52.1, 60.8,	64.8,	70.4,	73.9,	76.5,	84.2,	92.0,	96.8,	103.0,	108.2,	112.0,	117.6,	121.7,	125.0,	135.8,
8 days	60.6, 69.9,	74.3,	80.2,	83.9,	86.7,	94.9,	103.1,	108.0,	114.5,	119.9,	123.9,	129.6,	133.9,	137.2,	148.3,
10 days	68.6, 78.5,	83.2,	89.5,	93.4,	96.2,	104.8,	113.4,	118.5,	125.3,	130.8,	134.9,	140.8,	145.2,	148.7,	159.9,
12 days	76.3, 86.8,	91.7,	98.3,	102.3,	105.3,	114.3,	123.2,	128.5,	135.5,	141.2,	145.4,	151.4,	155.9,	159.5,	171.0,
16 days	91.0, 102.5,	107.8,	114.9,	119.3,	122.6,	132.1,	141.6,	147.2,	154.6,	160.6,	165.0,	171.4,	176.0,	179.7,	191.7,
20 days	105.1, 117.5,	123.2,	130.8,	135.4,	138.9,	149.0,	158.9,	164.9,	172.5,	178.8,	183.4,	190.0,	194.8,	198.6,	211.0,
25 days	122.2, 135.5,	141.6,	149.8,	154.7,	158.4,	169.1,	179.6,	185.8,	193.8,	200.4,	205.1,	212.0,	217.0,	221.0,	233.7,
NOTES:															

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

M5_60mins = 14.5 M5_2days = 52.3

r = 14.5/52.3r = 0.277

APPENDIX E – UISCE EIREANN PRE-CONNECTION ENQUIRY

Pre-connection enquiry form

Business developments, mixed use developments, housing developments

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. If completing this form by hand, please use BLOCK CAPITALS and black ink. Please note that this is a digital PDF form and can be filled in electronically

Please refer to the **Guide to completing the pre-connection enquiry form** on page 14 of this document when completing the form.

* Denotes mandatory/ required field. Please note, if mandatory fields are not completed the application will be returned.

*/	App	lica	nt d	etai	IS:																						
R	egis	tere	ed co	mpa	any	nam	ne (i	f ap	plica	able	e):																
Tı	radi	ng ı	name	e (if a	appl	icab	ole):																				
		Ť		Ī	 T		T						<u> </u>	!				l		!	 						
		220	y reg	ictra	tion		mb.))r (i:	fan	nlic		١٠.				l	l							l	l	<u> </u>	
P	arer	nt co	ompa	any	regis	ster	ed c	om	pan	y na	me	(if a	appl	icat	ole):												•
_	-		'	-	-	1		·					-					· 							1		
		-+ -			:	+	+: ~ ~		h -	/:4		. 1:	املم			l											
۲,	arer	nt co	ompa	any	regis	stra	tion	nuı	mbe	er (if	app	olica	able)	:													
			ompa e not	-	_										rov	 ide	the	арр	lica	nt's	nan	ne:					
				-	_										rov	ide [·]	the	арр	lica	nt's	nan	ne:					
lf	you	ı are	e not	a re	_										prov	ide ·	the	app	lica	nt's	nan	ne:					
f *(you Con	u are	not nam	a re	_										prov	ide	the	арр	lica	nt's	nan	ne:					
f *(you Con	u are	e not	a re	_										prov	ide	the	арр	lica	nt's	nan	ne:					
If *	you Con	u are	not nam	a re	_										prov	ide	the	арр	lica	nt's	nan	ne:					
If *	you Con	u are	not nam	a re	_										prov	ide	the	арр	lica	nt's	nan	ne:					
t *(*	you Con Post	tact	not nam	a re	_										prov	ide	the	арр	lica	nt's	nan	ne:					
If *(* *	Con	tacttal a	nam	a re	egist	ered	d co	mp	any,	/bus	sine	ss, r	olea	se p	prov	ide ·	the	app	lica	nt's	nan	ne:					
If *(* *	Con	tacttal a	not nam	a re	egist	ered	d co	mp	any,	/bus	sine	ss, r	olea	se p	prov	ide	the	арр	lica	nt's	nan	ne:					
If	you Con Post	tacttal a	namaddre	a re	egist	ered	d co	mp	any,	/bus	sine	ss, r	olea	se p	prov	ide	the	арр	lica	nt's	nan	ne:					
If	Con Post	tact tal a	not namaddre	a re	egist	ered	d co	mp	any,	/bus	sine	ss, r	olea	se p	prov	ide	the	арр	lical	nt's	nan	ne:					
If	Con Post	tact tact code se pl	not namaddre	a re	egist	ered	d co	mp	any,	/bus	sine	ss, r	olea	se p	prov	ide	the	app	lica	nt's	nan	ne:					

									n+						andat		on a	sacti	ر +bi	h * iı	wit	ked	marl	ds r	e fie	The
									eric	age	an	sing	if us	:ory	illuat	e n	JII a	3CCti	I UIII				_			
			ш																			e: [ame	ct n	onta	*Co
	\Box																		ble):	plica	ар	e (if	nam	ny r	npa	Com
																						s:	dres	ado	sta	*Pos
														Г												
							•		'	•						一				П			•	le:	rco	*Eir
														er	umbe	 ile r	mol	or a	ıdlin	a lar	ner	eith	vide	pro	ase	Plea
									Π					Τ	\top	$\overline{}$			$\overline{}$							Land
															\pm	$\overline{}$			$\overline{}$			[e	obil	*Mc
	\neg	$\overline{}$											 	 	\pm	\pm			$\frac{1}{1}$	\Box		[*Em
																									i i a i i	
ndence in	nonc	rre	e ((tur	fu	eiv <i>e</i>	ece	d r	uld	sho	10 (·wł	zení	r a	nt o	nlic	e ar	is th	ar it	eth	wh	ate	ndic	e in	6 29	*DI
ilaciice iii	pond			· ui				u .	uiu	,,,,	10 3	. ***	,ciic	ı u		piic	c up	13 (11)		uiry	enq	ne e	to th	on t	lat	rel
															gent									nt	olica	Арр
																				ls	tai	de	ite	S	n B	tion
):	ber	um	ng n	ildir	/Bu	ıame	ing	3uil(ıme/l	ite n	de S	ıclu	1 (in	ess '	ddr	te a	*Sit
	\top													Π	\top	Ť		1	$\overline{}$							
	\pm	\exists												$\overline{\Box}$	\pm	\exists			\pm				2	255.2	ddr	*Ad
	\pm	$\frac{1}{1}$												\perp	+	\pm			$\frac{\perp}{1}$							
	+	\dashv											\vdash	\pm	\pm	寸		+	\pm							
	+	\dashv					F :.		1 1				\vdash	一	+	井			+						_	
					ae	rco	EII					<u> </u>												.y	oun	*Co
													+ \•	oin					,							
													cj.		ion n	nec	con	ncad	nro	toc .	lina	.ord	l co.	Cric	ich	*Irio
								1	\neg		\neg	\neg	\neg	——	ion p				(pro	tes	lina	ord	_			
	106	_]			\prod				(Y)	ning	Nort	1					()	s (X	ting	East
362,000	nd 362	10 aı	9,00	า 02	vee	oetv	-	_) an	(Y) 5,900	ning en 0	Nort etwe	l be be	nust	ngs i	asti	or Ea	es fo	s (X 'alu	ting	East
362,000	nd 36:	00 a	9,00	n 02	vee	oetw	-	_		Nor I(Y)) an	(Y)	ning en 0	Nort etwe	l be be	nust	ngs i	asti	or Ea	es fo	s (X 'alu	ting	East
362,000	าd 36	00 a	29,00	n 02	vee	oetv	-	_				8	5,878	315	(Y) [5,900	ning en 0 ublir	Nort etwe t., D	be be	must	ngs i	asti f GF	or Ea	es fo	s (X 'alu ordi	ting te: \ co-	East Note Eg. o
362,000	nd 362	00 a	29,00	n 02	vee	oetv	-	_				8	5,878	315	5,900 E(X)	ning en 0 ublir	Nort etwe t., D	be be	must	ngs i	asti f GF	or Ea	es fo	s (X 'alu ordi	ting te: \ co-	East Note Eg. o
362,000	nd 36.	00 a	29,00	n 02	vee	oetv	-	_				8	5,878	315	5,900 E(X)	ning en 0 ublir	Nort etwe t., D	be be	must	ngs i	asti f GF	or Ea	es fo	s (X 'alu ordi	ting te: \ co-	East Note Eg. o
	nd 36.	00 a	29,00			petv	-	_				8	5,878	315	(Y) 5,900 : E(X)	ning en 0 ublir	Nortetwe	be be nell S	must	ngs i	asti f GF whe	or Ea	es for	s (X ′alud ordi Aut	tte: \ co-	Note Eg. (
862,000 No	nd 36.	00 a	29,00	n 02		petv	519	4,6	234	(Y) :	N	8 d:	5,878 atec	315 315	(Y) 5,900 : E(X)	ning en 0 ublir	Nortetwe	be beenell S sed d	must O'Cor ropo	ngs i	asti f GF whe	ning	es fo nate hor	s (X 'aluordi Aut	tte: \co-	East Note Eg. 6 *Loc *Ha
	_ _ _): 	ber	um	ng n	ildir	/Bu	name	ing	3uild	ime/l	ite n				ess 1	ess 2	te a	

2

	ш	C	D	ev	elo	pı	me	nt	d	eta	ils																			
		ase est		tlir	ie t	he	do	me	est	ic a	nd	or i	ndu	ıstr	y/b	usir	ness	use	e pr	орс	sec	l:								
		P	rop	ert	y ty	pe					Nu	mbe	r of	uni	ts			ı	Prop	ert	y ty	pe				Nui	nbe	r of	uni	ts
				Hou	se														Ap,	artn	nent	S								
			[Dup	lex													ΑĮ			er o									
Inc	ndustry/business:																													
		P	rop	ert	y ty	pe					Nu	mbe	r of	uni	ts			l	Prop	pert	y ty	pe				Nui	mbe	er of	uni	ts
			Ag	ricul	ltura	al												Br	ewe	ry /	Dist	illery	,							
	R	esta	ura	nt /	Caf	é/	Pub)										Ca	r Wa	ash .	/ Val	eting	3							
			(Crec	he														Da	ta C	entr	е								
			Fire	: Ну	drar	nt													Fir	e St	atio	า								
		Fo	od	Pro	cess	sin	g											Hote	el Ac	con	nmo	datio	on							
I	nc	ustr	ial	/ Má	anuf	ac	turir	ng										Lau	ndr	y / L	.aun	drett	:e							
				Offi	ce													Pri	mar	y Ca	ire C	entr	e							
Re	esi	denti	al /	Nurs	sing (Car	e Ho	me												Ret	ail									
				Scho	ool														Spo	rts l	Facil	ity								
	St	uder	nt A	cco	mm	od	atio	n											Wá	areh	ious	e								
О	th	er (p	olea	ıse s	spec	ify	typ	e)																	No.	of U	nits			
		a n	r۵۱	/ide	ad	dit	iona	al d						pos gor			ness	s use	e ar	e in	the	Foc	od P	roce	essi	ng,	Ind	ustr	ial u	ıni

9.2		cted occupancy in number of people mber of office workers, number of needs, number of retail workers:	
10	*Approximate start date of prop	osed development:	
11	*Is the development multi-phase	d?	Yes No
	If 'Yes', application must include a ma	ster-plan identifying the developmen	t phases and the current phase number.
	If 'Yes', please provide details of va phasing requirements.	riations in water demand volumes a	and wastewater discharge loads due to
12	*Please indicate the type of conn	ection required by ticking the app	propriate box below:
	Both Water and Wastewater	Please complete both Sections D a	and E
	Water only	Please go to Section D	
	Wastewater only	Please go to Section E	
	Reason for only applying for one se	rvice (if applicable):	

13	*Is there an existing connection to public wate	r mains at the site?	Yes No
13.1	If yes, is this enquiry for an additional connection	to one already installed?	Yes No
13.2	If yes, is this enquiry to increase the size of an ex	isting connection?	Yes No
14	Approximate date water connection is require	d:	
15	*What diameter of water connection is require	ed to service the developme	nt? mm
16	*Is more than one connection required to the part to service this development?	public infrastructure	Yes No No
	If 'Yes', how many?		
17	Please indicate the business water demand (s	hops, offices, schools, hotel	s, restaurants, etc.):
	Post-development peak hour water demand		l/s
	Post-development average hour water demand		l/s
	Please include calculations on the attached sheet please in the water demand profile, please provide all su		a daily/weekly/seasonal variation
18	Please indicate the industrial water demand (industry-specific water req	uirements):
	Post-development peak hour water demand		l/s
	Post-development average hour water demand		l/s
	Please include calculations on the attached sheet pin the water demand profile, please provide all su		a daily/weekly/seasonal variation
19	What is the existing ground level at the prope Head Ordnance Datum?	rty boundary at connection	point (if known) above Malin
20	What is the highest finished floor level of the pr	oposed development above	Malin Head Ordnance Datum?
21	Is on-site water storage being provided?		Yes No
		provided.	

Section D | Water connection and demand details

22	Are there fire flow requirements?		Yes No
	Additional fire flow requirements over and above those identified in Q17-18		l/s
	Please include calculations on the attached sheet Fire Authority.	provided, and include confirma	ation of requirements from the
23	Do you propose to supplement your potable wa	ter supply from other sources?	? Yes No
	If 'Yes', please indicate how you propose to supp (see Guide to completing the application form		
Sec	tion E Wastewater connection and di	scharge details	
24	*Is there an existing connection to a public se		Yes No No
24.1	If yes, is this enquiry for an additional connection	-	Yes No No
24.2	If yes, is this enquiry to increase the size of an ex	isting connection?	Yes No No
25	*Approximate date that wastewater connect	ion is required:	
26	*What diameter of wastewater connection is i	required to service the develo	pment? mm
27	*Is more than one connection required to the to service this development?	public infrastructure	Yes No No
	If 'Yes', how many?		
28	Please indicate the commercial wastewater hyd	lraulic load (shops, offices, sch	ools, hotels, restaurants, etc.):
	Post-development peak discharge		l/s
	Post-development average discharge		l/s
	Please include calculations on the attached shee	t provided.	
29	Please indicate the industrial wastewater hyd	draulic load (industry-specific	discharge requirements):
	Post-development peak discharge		l/s
	Post-development average discharge		l/s

Please include calculations on the attached sheet provided.

30	Wastewater	organic	load:
----	------------	---------	-------

Characteristic	Max concentration (mg/l)	Average concentration (mg/l)	Maximum daily load (kg/day)
Biochemical oxygen demand (BOD)			
Chemical oxygen demand (COD)			
Suspended solids (SS)			
Total nitrogen (N)			
Total phosphorus (P)			
Other			
Temperature range			
pH range			
If 'Yes', please give reason f	or discharge and comment	on adequacy of SUDS/atten	uation measures proposed.
Please submit detailed calculate with this application *Do you propose to pump	_	es, peak flows and attenuat	Yes No
If 'Yes', please include justifi	ication for your pumped sol	ution with this application.	
What is the existing grour Head Ordnance Datum?	nd level at the property bo	oundary at connection poi	nt (if known) above Malin
What is the lowest finishe	d floor level on site above	Malin Head Ordnance Dat	um? m
What is the proposed inve	ert level of the pipe exiting	g the property to the publ	ic road?

Section F | Supporting documentation Please provide the following additional information (all mandatory): Site location map: A site location map to a scale of 1:1000, which clearly identifies the land or structure to which the enquiry relates. The map shall include the following details: i. The scale shall be clearly indicated on the map. ii. The boundaries shall be delineated in red. iii. The site co-ordinates shall be marked on the site location map. Details of planning and development exemptions (if applicable). > Calculations (calculation sheets provided below). Site layout map to a scale of 1:500 showing layout of proposed development, water network and wastewater network layouts, additional water/wastewater infrastructure if proposed, connection points to Irish Water infrastructure. Conceptual design of the connection asset from the proposed development to the existing Irish Water infrastructure, including service conflicts, gradients, pipe sizes and invert levels. Any other information that might help Irish Water assess this pre-connection enquiry. **Section G | Declaration** I/We hereby make this application to Irish Water for a water and/or wastewater connection as detailed on this form. I/We understand that any alterations made to this application must be declared to Irish Water. The details that I/we have given with this application are accurate. I/We have enclosed all the necessary supporting documentation. Any personal data you provide will be stored and processed by Irish Water and may be transferred to third parties for the purposes of the water and/or wastewater connection process. I hereby give consent to Irish Water to store and process my personal data and to transfer my personal data to third parties, if required, for the purposes of the connection process. If you wish to revoke consent at any time or wish to see Irish Water's full Data Protection Notice, please see https://www.water.ie/privacy-notice/ Date: Signature: Your full name (in BLOCK CAPITALS):

Irish Water will carry out a formal assessment based on the information provided on this form.

Any future connection offer made by Irish Water will be based on the information that has been provided here.

Please submit the completed form to **newconnections@water.ie** or alternatively, post to:

Irish Water PO Box 860 South City Delivery Office Cork City Please note that if you are sending us your application form and any associated documentation by email, the maximum file size that we can receive in any one email is 35MB.

Please note, if mandatory fields are not completed the application will be returned.

Irish Water is subject to the provisions of the Freedom of Information Act 2014 ("FOIA") and the codes of practice issued under FOIA as may be amended, updated or replaced from time to time. The FOIA enables members of the public to obtain access to records held by public bodies subject to certain exemptions such as where the requested records may not be released, for example to protect another individual's privacy rights or to protect commercially sensitive information. Please clearly label any document or part thereof which contains commercially sensitive information. Irish Water accepts no responsibility for any loss or damage arising as a result of its processing of freedom of information requests.

Calculations Water demand

On-site storage			
Fire flow requirements			
·			

Foul wastewater discharge			

Tiow balancing and pumping		

Guide to completing the pre-connection enquiry form

This form should be completed by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure.

The Irish Water Codes of Practice are available at **www.water.ie** for reference.

Section A | Applicant Details

- **Question 1:** This question requires the applicant or company enquiring about the feasibility of a connection to identify themselves, their postal address, and to provide their contact details.
- **Question 2:** If the applicant has employed a consulting engineer or an agent to manage the enquiry on their behalf, the agent's address and contact details should be recorded here.
- **Question 3:** Please indicate whether it is the applicant or the agent who should receive future correspondence in relation to the enquiry.

Section B | **Site details**

- **Question 4:** This is the address of the site requiring the water/wastewater service connection and for which this enquiry is being made.
- **Question 5:** Please provide the Irish Grid co-ordinates of the proposed site. Irish grid positions on maps are expressed in two dimensions as Eastings (E or X) and Northings (N or Y) relative to an origin. You will find these coordinates on your Ordnance Survey map which is required to be submitted with an application.
- **Question 6:** Please identify the Local Authority that is or will be dealing with your planning application, for example Cork City Council.
- **Question 7:** Please indicate if planning permission has been granted for this application, and if so, please provide the planning permission reference number.
- Question 8: Please indicate if this development is affiliated with a government body/agency, and if so, specify

Section C | Development details

- **Question 9:** Please specify the number of different property/premises types by filling in the tables provided.
- **Question 9.1:** Please provide additional details if your proposed business use are in the Food Processing, Industrial unit/ Manufacturing, Sports Facility or Other Categories.
- **Question 9.2:** Please indicate the maximum expected occupancy in numbers of people according to the proposed development you selected.
- **Question 10:** Please indicate the approximate commencement date of works on the development.
- **Question 11:** Please indicate if a phased building approach is to be adopted when developing the site. If so, please provide details of the phase master-plan and the proposed variation in water demand/wastewater discharge as a result of the phasing of the development.
- **Question 12:** Please indicate the type of connection required by ticking the appropriate box and proceed to complete the appropriate section or sections.

Section D | Water connection and demand details

- **Question 13:** Please indicate if a water connection already exists for this site.
- **Question 13.1:** Please indicate if this enquiry concerns an additional connection to one already installed on the site.
- **Question 13.2:** Please indicate if you are proposing to upgrade the water connection to facilitate an increase in water demand. Irish Water will determine what impact this will have on our infrastructure.
- **Question 14:** Please indicate the approximate date that the proposed connection to the water infrastructure will be required.
- **Question 15:** Please indicate what diameter of water connection is required to service this development.

- **Question 16:** Please indicate if more than one connection is required to service this development. Please note that the connection size provided may be used to determine the connection charge.
- **Question 17:** If this connection enquiry concerns a business premises, please provide calculations for the water demand and include your calculations on the calculation sheet provided. Business premises include shops, offices, hotels, schools, etc. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.
- **Question 18:** If this connection enquiry is for an industrial premises, please calculate the water demand and include your calculations on the calculation sheet provided. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). The peak demand for sizing of the pipe network will be as per the specific business production requirements. For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.
- **Question 19:** Please specify the ground level at the location where connection to the public water mains will be made. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 20:** Please specify the highest finished floor level on site. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 21:** If storage is required, water storage capacity of 24-hour water demand must usually be provided at the proposed site. In some cases, 24-hour storage capacity may not be required, for example 24-hour storage for a domestic house would be provided in an attic storage tank. Please calculate the 24-hour water storage requirements and include your calculations on the attached sheet provided. Please also confirm that on-site storage is being provided by ticking the appropriate box.
- Question 22: The water supply system shall be designed and constructed to reliably convey the water flows that are required of the development including fire flow requirements by the Fire Authority. The Fire Authority will provide the requirement for fire flow rates that the water supply system will have to carry. Please note that while flows in excess of your required demand may be achieved in the Irish Water network and could be utilised in the event of a fire, Irish Water cannot guarantee a flow rate to meet your fire flow requirement. To guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development. Please include your calculations on the attached sheet provided, and further provide confirmation of the Fire Authority requirements.
- **Question 23:** Please identify proposed additional water supply sources, that is, do you intend to connect to the public water mains or the public mains and supplement from other sources? If supplementing public water supply with a supply from another source, please provide details as to how the potable water supply is to be protected from cross contamination at the premises.

Section E | Wastewater connection and discharge details

- **Question 24:** Please indicate if a wastewater connection to a public sewer already exists for this site.
- **Question 24.1:** Please indicate if this enquiry relates to an additional wastewater connection to one already installed.
- **Question 24.2:** Please indicate if you are proposing to upgrade the wastewater connection to facilitate an increased discharge. Irish Water will determine what impact this will have on our infrastructure.
- **Question 25:** Please specify the approximate date that the proposed connection to the wastewater infrastructure will be required.
- **Question 26:** Please indicate what diameter of wastewater connection is required to service this development.
- **Question 27:** Please indicate if more than one connection is required to service this development. Please indicate number required.
- **Question 28:** If this enquiry relates to a business premises, please provide calculations for the wastewater discharge and include your calculations on the attached sheet provided. Business premises include shops, offices, hotels, schools, etc. Discharge rates (peak and average) are site specific. Average discharge is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). For design purposes, please refer to the Irish Water Codes of Practice for Wastewater Infrastructure.

- **Question 29:** If this enquiry relates to an industrial premises, please provide calculations for the wastewater discharge and include your calculations on the calculation sheet provided. Discharge rates (peak and average) are site specific. Average discharge is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). The peak discharge for sizing of the pipe network will be as per the specific business production requirements. For design purposes, please refer to the Irish Water Codes of Practice for Wastewater Infrastructure.
- Question 30: Please specify the maximum and average concentrations and the maximum daily load of each of the wastewater characteristics listed in the wastewater organic load table (if not domestic effluent), and also specify if any other significant concentrations are expected in the effluent. Please complete the table and provide additional supporting documentation if relevant. Note that the concentration shall be in mg/l and the load shall be in kg/day. Note that for business premises (shops, offices, schools, hotels, etc.) for which only domestic effluent will be discharged (excluding discharge from canteens/ restaurants which would require a Trade Effluent Discharge licence), there is no need to complete this question.
- Question 31: In exceptional circumstances, such as brownfield sites, where the only practical outlet for storm/ surface water is to a combined sewer, Irish Water will consider permitting a restricted attenuated flow to the combined sewer. Storm/surface water will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer and the applicant must demonstrate how the storm/surface water flow from the proposed site is minimised using sustainable urban drainage system (SUDS). This type of connection will only be considered on a case by case basis. Please advise if the proposed development intends discharging surface water to the combined wastewater collection system.
- **Question 32:** Please specify if the development needs to pump its wastewater discharge to gain access to Irish Water infrastructure.
- **Question 33:** Please specify the ground level at the location where connection to the public sewer will be made. This is required to determine if the development can be connected to the public sewer via gravity discharge. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 34:** Please specify the lowest floor level of the proposed development. This is required in order to determine if the development can be connected to the public sewer via gravity discharge. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 35:** Please specify the proposed invert level of the pipe exiting the property to the public road.

Section F | Supporting documentation

Please provide additional information as listed.

Section G | **Declaration**

Please review the declaration, sign, and return the completed application form to Irish Water by email or by post using the contact details provided in Section G.

Notes			